55 research outputs found

    Understanding the National Student Survey: investigations in languages, linguistics and area studies

    Get PDF
    This report is a summary of interviews and focus groups with around 100 students and 50 members of academic staff in departments of languages, linguistics or area studies at nine universities in the UK. In recent years, concerns have been expressed about the ambiguity of some of the statements which students are asked to respond to in the National Student Survey (NSS). This project set out to get a better understanding of how students and staff understand the questions. The interviews and focus groups were carried out by members of academic staff at the nine institutions who each then wrote an individual report of their findings. This summary is designed to enable wider distribution of these findings without identifying individual staff, institutions `or departments

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    The distribution and mitochondrial genotype of the hydroid Aglaophenia latecarinata is correlated with its pelagic Sargassum substrate type in the tropical and subtropical western Atlantic Ocean

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Govindarajan, A. F., Cooney, L., Whittaker, K., Bloch, D., Burdorf, R. M., Canning, S., Carter, C., Cellan, S. M., Eriksson, F. A. A., Freyer, H., Huston, G., Hutchinson, S., McKeegan, K., Malpani, M., Merkle-Raymond, A., Ouellette, K., Petersen-Rockney, R., Schultz, M., & Siuda, A. N. S. The distribution and mitochondrial genotype of the hydroid Aglaophenia latecarinata is correlated with its pelagic Sargassum substrate type in the tropical and subtropical western Atlantic Ocean. Peerj, 7, (2019): e7814, doi:10.7717/peerj.7814.The pelagic brown macroalga Sargassum supports rich biological communities in the tropical and subtropical Atlantic region, including a variety of epiphytic invertebrates that grow on the Sargassum itself. The thecate hydroid Aglaophenia latecarinata is commonly found growing on some, but not all, Sargassum forms. In this study, we examined the relationship between A. latecarinata and its pelagic Sargassum substrate across a broad geographic area over the course of 4 years (2015–2018). The distribution of the most common Sargassum forms that we observed (Sargassum fluitans III and S. natans VIII) was consistent with the existence of distinct source regions for each. We found that A. latecarinata hydroids were abundant on both S. natans VIII and S. fluitans III, and also noted a rare observation of A. latecarinata on S. natans I. For the hydroids on S. natans VIII and S. fluitans III, hydroid mitochondrial genotype was strongly correlated with the Sargassum substrate form. We found significant population genetic structure in the hydroids, which was also consistent with the distributional patterns of the Sargassum forms. These results suggest that hydroid settlement on the Sargassum occurs in type-specific Sargassum source regions. Hydroid species identification is challenging and cryptic speciation is common in the Aglaopheniidae. Therefore, to confirm our identification of A. latecarinata, we conducted a phylogenetic analysis that showed that while the genus Aglaophenia was not monophyletic, all A. latecarinata haplotypes associated with pelagic Sargassum belonged to the same clade and were likely the same species as previously published sequences from Florida, Central America, and one location in Brazil (São Sebastião). A nominal A. latecarinata sequence from a second Brazilian location (Alagoas) likely belongs to a different species.This research was funded by Sea Education Association, Eckerd College, the New England Aquarium Conservation Action Fund and the Virginia Wellington Cabot Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The Ocean Sampling Day Consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    A randomised controlled trial of calcium channel blockade (CCB) with Amlodipine For the treatment oF subcortical ischaEmic vasCular demenTia (AFFECT):study protocol

    Get PDF
    Background Vascular dementia is the second most common cause of dementia affecting over seven million people worldwide, yet there are no licensed treatments. There is an urgent need for a clinical trial in this patient group. Subcortical ischaemic vascular dementia is the most common variant of vascular dementia. This randomised trial will investigate whether use of calcium channel blockade with amlodipine, a commonly used agent, can provide the first evidence-based pharmacological treatment for subcortical ischaemic vascular dementia. Methods/Design This is a randomised controlled trial of calcium channel blockade with Amlodipine For the treatment oF subcortical ischaEmic vasCular demenTia (AFFECT) to test the hypothesis that treatment with amlodipine can improve outcomes for these patients in a phase IIb, multi-centre, double-blind, placebo-controlled randomised trial. The primary outcome is the change from baseline to 12 months in the Vascular Dementia Assessment Scale cognitive subscale (VADAS-cog). Secondary outcomes include cognitive function, executive function, clinical global impression of change, change in blood pressure, quantitative evaluation of lesion accrual based on magnetic resonance imaging (MRI), health-related quality of life, activities of daily living, non-cognitive dementia symptoms, care-giver burden and care-giver health-related quality of life, cost-effectiveness and institutionalisation. A total of 588 patients will be randomised in a 1:1 ratio to either amlodipine or placebo, recruited from sites across the UK and enrolled in the trial for 104 weeks. Discussion There are no treatments licensed for vascular dementia. The most common subtype is subcortical ischaemic vascular dementia (SIVD). This study is designed to investigate whether amlodipine can produce benefits compared to placebo in established SIVD. It is estimated that the numbers of people with VaD and SIVD will increase globally in the future and the results of this study should inform important treatment decisions. Trial registration: Current Controlled Trials ISRCTN31208535. Registered on 7 March 2014

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore