47 research outputs found

    Sea-ice dynamics in an Arctic coastal polynya during the past 6500 years

    Get PDF
    The production of high-salinity brines during sea-ice freezing in circum-arctic coastal polynyas is thought to be part of northern deep water formation as it supplies additional dense waters to the Atlantic meridional overturning circulation system. To better predict the effect of possible future summer ice-free conditions in the Arctic Ocean on global climate, it is important to improve our understanding of how climate change has affected sea-ice and brine formation, and thus finally dense water formation during the past. Here, we show temporal coherence between sea-ice conditions in a key Arctic polynya (Storfjorden, Svalbard) and patterns of deep water convection in the neighbouring Nordic Seas over the last 6500 years. A period of frequent sea-ice melting and freezing between 6.5 and 2.8 ka BP coincided with enhanced deep water renewal in the Nordic Seas. Near-permanent sea-ice cover and low brine rejection after 2.8 ka BP likely reduced the overflow of high-salinity shelf waters, concomitant with a gradual slow down of deep water convection in the Nordic Seas, which occurred along with a regional expansion in sea-ice and surface water freshening. The Storfjorden polynya sea-ice factory restarted at ~0.5 ka BP, coincident with renewed deep water penetration to the Arctic and climate amelioration over Svalbard. The identified synergy between Arctic polynya sea-ice conditions and deep water convection during the present interglacial is an indication of the potential consequences for ocean ventilation during states with permanent sea-ice cover or future Arctic ice-free conditions

    Winter amplification of the European Little Ice Age cooling by the subpolar gyre

    Get PDF
    Climate reconstructions reveal a strong winter amplification of the cooling over central and northern continental Europe during the Little Ice Age period (LIA, here defined as c. 16th-18th centuries) via persistent, blocked atmospheric conditions. Although various potential drivers have been suggested to explain the LIA cooling, no coherent mechanism has yet been proposed for this seasonal contrast. Here we demonstrate that such exceptional wintertime conditions arose from sea ice expansion and reduced ocean heat losses in the Nordic and Barents seas, driven by a multicentennial reduction in the northward heat transport by the subpolar gyre (SPG). However, these anomalous oceanic conditions were largely decoupled from the European atmospheric variability in summer. Our novel dynamical explanation is derived from analysis of an ensemble of last millennium climate simulations, and is supported by reconstructions of European temperatures and atmospheric circulation variability and North Atlantic/Arctic paleoceanographic conditions. We conclude that SPG-related internal climate feedbacks were responsible for the winter amplification of the European LIA cooling. Thus, characterization of SPG dynamics is essential for understanding multicentennial variations of the seasonal cycle in the European/North Atlantic sector

    Cold spells in the Nordic Seas during the early Eocene Greenhouse

    Get PDF
    Abstract The early Eocene (c. 56 - 48 million years ago) experienced some of the highest global temperatures in Earth’s history since the Mesozoic, with no polar ice. Reports of contradictory ice-rafted erratics and cold water glendonites in the higher latitudes have been largely dismissed due to ambiguity of the significance of these purported cold-climate indicators. Here we apply clumped isotope paleothermometry to a traditionally qualitative abiotic proxy, glendonite calcite, to generate quantitative temperature estimates for northern mid-latitude bottom waters. Our data show that the glendonites of the Danish Basin formed in waters below 5 °C, at water depths of &lt;300 m. Such near-freezing temperatures have not previously been reconstructed from proxy data for anywhere on the early Eocene Earth, and these data therefore suggest that regionalised cool episodes punctuated the background warmth of the early Eocene, likely linked to eruptive phases of the North Atlantic Igneous Province.</jats:p

    Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era

    Get PDF
    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.(TABLE)Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013').This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product.This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike

    Arctic Ocean feels the heat

    No full text

    The ikaite to calcite transformation: implications for palaeoclimate studies

    No full text
    Marine sedimentary ikaite is the parent mineral to glendonite, stellate pseudomorphs found throughout the geological record which are most usually composed of calcite. Ikaite is known to be metastable at earth surface temperatures and pressures, readily breaking down to more stable carbonate polymorphs when exposed to warm (ambient) conditions. Yet the process of transformation of ikaite to calcite is not well understood, and there is an ongoing debate as to the palaeoclimatic significance of glendonites in the geological record. This study uses a combination of techniques to examine the breakdown of ikaite to calcite, outside of the ikaite growth medium, and to assess the palaeoclimatic and palaeoenvironmental significance of stable and clumped isotope compositions of ikaite-derived calcite. Powder X-ray diffraction shows that ikaite undergoes a quasi- solid-state transformation to calcite during heating of samples in air, yet when ikaite transforms under a high temperature differential, minor dissolution-recrystallisation may also occur with the ikaite structural waters. No significant isotopic equilibration to transformation temperature is observed in the resulting calcite. Therefore, in cases of transformation of ikaite in air, clumped and stable isotope thermometry can be used to reconstruct ikaite growth temperatures. In the case of ancient glendonites, where transformation of the ikaite occurred in contact with the interstitial waters of the host sediments over unknown timescales, it is uncertain whether the reconstructed clumped isotope temperatures reflect ikaite crystallisation or its transformation temperatures. Yet clumped and stable isotope thermometry may still be used conservatively to estimate an upper limit for bottom water temperatures. Furthermore, stable isotope along with element/Ca ratios shed light on the chemical environment of ikaite growth. Our data indicate that a range of (bio)geochemical processes may act to promote ikaite formation at different marine sedimentary sites, including bacterial sulphate reduction and anaerobic oxidation of methane. The colours of the ikaites, from light brown to dark brown, indicate a high organic matter content, favouring high rates of bacterial sulphate reduction as the main driver of ikaite precipitation. Highest Mg/Ca ratios are found in the most unstable ikaites, indicating that Mg acts to destabilise ikaite structure
    corecore