596 research outputs found
The First VERITAS Telescope
The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic
Radiation Imaging Telescope Array System) has been in operation since February
2005. We present here a technical description of the instrument and a summary
of its performance. The calibration methods are described, along with the
results of Monte Carlo simulations of the telescope and comparisons between
real and simulated data. The analysis of TeV -ray observations of the
Crab Nebula, including the reconstructed energy spectrum, is shown to give
results consistent with earlier measurements. The telescope is operating as
expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic
An unexpected nitrate distribution in the tropical North Atlantic at 18°N, 30°Wâimplications for new production
During a R.V. Meteor JGOFS-NABE cruise to a tropical site in the northeast Atlantic in spring 1989, three different vertical regimes with respect to nitrate distribution and availability within the euphotic zone were observed. Besides dramatic variations in the depth of the nitracline, a previously undescribed nose-like nitrate maximum within the euphotic zone was the most prominent feature during this study. Both the vertical structure of phytoplankton biomass and the degree of absolute and relative new production were related to the depth of the nitracline, which in turn was dependent on the occurrence/non-occurrence of the subsurface subtropical salinity maximum (S(max)). The mesoscale variability of the nitracline depth, as indicated from a pre-survey grid, and published data on the frequent occurrence of the S(max) in tropical waters suggest higher variability of new production and F-ratio than usually expected for oligotrophic oceans. The importance of salt fingering and double diffusion for nitrate transport into the euphotic zone is discussed
Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos
We present the results of a Monte-Carlo study of the sensitivity of the
planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV
energies. A complete simulation of the detector and data analysis is used to
study the detector's capability to search for muon neutrinos from sources such
as active galaxies and gamma-ray bursts. We study the effective area and the
angular resolution of the detector as a function of muon energy and angle of
incidence. We present detailed calculations of the sensitivity of the detector
to both diffuse and pointlike neutrino emissions, including an assessment of
the sensitivity to neutrinos detected in coincidence with gamma-ray burst
observations. After three years of datataking, IceCube will have been able to
detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma
significance, or, in the absence of a signal, place a 90% c.l. limit at a level
E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a
minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst
model following the formulation of Waxman and Bahcall would result in a 5-sigma
effect after the observation of 200 bursts in coincidence with satellite
observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Search for Anomalous Couplings in the Higgs Sector at LEP
Anomalous couplings of the Higgs boson are searched for through the processes
e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70
GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity
collected with the L3 detector at LEP at centre-of-mass energies
sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H
-> Z\gamma and H -> WW^(*) are considered and no evidence is found for
anomalous Higgs production or decay. Limits on the anomalous couplings d, db,
Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H
-> gamma gamma and H -> Z gamma decay rates
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays
Bose-Einstein correlations of both neutral and like-sign charged pion pairs
are measured in a sample of 2 million hadronic Z decays collected with the L3
detector at LEP. The analysis is performed in the four-momentum difference
range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be
smaller than that of charged pions. This result is in qualitative agreement
with the string fragmentation model
Z Boson Pair-Production at LEP
Events stemming from the pair-production of Z bosons in e^+e^- collisions are
studied using 217.4 pb^-1 of data collected with the L3 detector at
centre-of-mass energies from 200 GeV up to 209 GeV. The special case of events
with b quarks is also investigated.
Combining these events with those collected at lower centre-of-mass energies,
the Standard Model predictions for the production mechanism are verified. In
addition, limits are set on anomalous couplings of neutral gauge bosons and on
effects of extra space dimensions
Neutral-Current Four-Fermion Production in e+e- Interactions at LEP
Neutral-current four-fermion production, e+e- -> ffff is studied in 0.7/fb of
data collected with the L3 detector at LEP at centre-of-mass energies
root(s)=183-209GeV. Four final states are considered: qqvv, qqll, llll and
llvv, where l denotes either an electron or a muon. Their cross sections are
measured and found to agree with the Standard Model predictions. In addition,
the e+e- -> Zgamma* -> ffff process is studied and its total cross section at
the average centre-of-mass energy 196.6GeV is found to be 0.29 +/- 0.05 +/-
0.03 pb, where the first uncertainty is statistical and the second systematic,
in agreement with the Standard Model prediction of 0.22 pb. Finally, the mass
spectra of the qqll final states are analysed to search for the possible
production of a new neutral heavy particle, for which no evidence is found
- âŠ