712 research outputs found
Loop Corrections to Cosmological Perturbations in Multi-field Inflationary Models
We investigate one-loop quantum corrections to the power spectrum of
adiabatic perturbation from entropy modes/adiabatic mode cross-interactions in
multiple DBI inflationary models. We find that due to the non-canonical kinetic
term in DBI models, the loop corrections are enhanced by slow-varying parameter
and small sound speed . Thus, in general the loop-corrections
in multi-DBI models can be large. Moreover, we find that the loop-corrections
from adiabatic/entropy cross-interaction vertices are IR finite.Comment: 21 pages, 7 figures; v2, typos corrected, ref added; v3 typos
corrected, version for publishing in jca
Ultrasound attenuation in gap-anisotropic systems
Transverse ultrasound attenuation provides a weakly-coupled probe of momentum
current correlations in electronic systems. We develop a simple theory for the
interpretation of transverse ultrasound attenuation coefficients in systems
with nodal gap anisotropy. Applying this theory we show how ultrasound can
delineate between extended-s and d-wave scenarios for the cuprate
superconductors.Comment: Uuencode file: 4 pages (Revtex), 3 figures. Some references adde
Geomorphological significance of Ontario Lacus on Titan: Integrated interpretation of Cassini VIMS, ISS and RADAR data and comparison with the Etosha Pan (Namibia)
International audienceOntario Lacus is the largest lake of the whole southern hemisphere of Titan, Saturn's major moon. It has been imaged twice by each of the Cassini imaging systems (Imaging Science Subsystem (ISS) in 2004 and 2005, Visual and Infrared Mapping Spectrometer (VIMS) in 2007 and 2009 and Radar in 2009 and 2010). In this study, we take advantage of each imaging dataset to establish a global survey of Ontario Lacus' environment from 2005 to 2010. We perform a geomorphological mapping and interpretation of Ontario Lacus, mainly based on a joint analysis of VIMS and Radar SAR datasets, along with the T49 altimetric profile acquired in December 2008. The morphologies observed on Ontario Lacus are compared to landforms of a semi-arid terrestrial analog, which closely resembles Titan's lakes: the pans of the Etosha Basin, located in Namibia. From this comparison, we infer that Ontario Lacus is an extremely flat depression where liquids, only located in the darkest areas in the Radar data, cover topographic lows where the "alkanofer" would raise above the depression floor. The rest of the depression appears rather as a muddy flat surface likely composed of a thick coating of photon-absorbing materials, explaining its still rather dark appearance in the infrared and radar data. We also determined whether surface changes occurred during the 5 years time interval between 2005 and 2010. We found that the depression contour is constant at the resolution of ISS and VIMS data, both being consistent with the depression contour derived from the Radar data. Our interpretation, in which the liquids are located only in some parts of Ontario Lacus, agrees with the lack of significant change of the depression contour between 2007 (and 2005 with more uncertainties) and 2010
Post-ischaemic silencing of p66Shc reduces ischaemia/reperfusion brain injury and its expression correlates to clinical outcome in stroke
In light of the limited repertoire of therapeutical options available for the treatment of ischaemic stroke, the identification of novel potential targets is vital; in this respect, the present study demonstrates that the adaptor protein p66Shc holds this potential as an adjunct therapy to thrombolysis. Post-ischaemic silencing of p66Shc protein yielded beneficial effects in a mouse model of I/R brain injury underlying an interesting translational perspective for this target protein. Further, in proof-of-principle clinical experiments using PBMs, we demonstrate that p66Shc gene expression is transiently increased and that its levels correlate to short-term outcome in ischaemic stroke patients. Although these latter experiments are not directly relevant to the experiments performed in mice and in human endothelial cells, they provide novel important information about p66Shc regulation in stroke patients and set the basis for further investigations aimed at assessing the potential for p66Shc to become a novel therapeutic target as an adjunct of thrombolysis for the management of acute ischaemic strok
Dynamical mean-field approach to materials with strong electronic correlations
We review recent results on the properties of materials with correlated
electrons obtained within the LDA+DMFT approach, a combination of a
conventional band structure approach based on the local density approximation
(LDA) and the dynamical mean-field theory (DMFT). The application to four
outstanding problems in this field is discussed: (i) we compute the full
valence band structure of the charge-transfer insulator NiO by explicitly
including the p-d hybridization, (ii) we explain the origin for the
simultaneously occuring metal-insulator transition and collapse of the magnetic
moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of
plane-wave pseudopotentials which allows us to compute the orbital order and
cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a
general explanation for the appearance of kinks in the effective dispersion of
correlated electrons in systems with a pronounced three-peak spectral function
without having to resort to the coupling of electrons to bosonic excitations.
These results provide a considerable progress in the fully microscopic
investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for
publication in the Special Topics volume "Cooperative Phenomena in Solids:
Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
Emergence of semi-localized Anderson modes in a disordered photonic crystal as a result of overlap probability
In this paper we study the effect of positional randomness on transmissional
properties of a two dimensional photonic crystal as a function of a randomness
parameter ( completely ordered, completely
disordered). We use finite-difference time-domain~(FDTD) method to solve the
Maxwell's equations in such a medium numerically. We consider two situations:
first a 90\degr bent photonic crystal wave-guide and second a centrally
pulsed photonic crystal micro-cavity. We plot various figures for each case
which characterize the effect of randomness quantitatively. More specifically,
in the wave-guide situation, we show that the general shape of the normalized
total output energy is a Gaussian function of randomness with
wavelength-dependent width. For centrally pulsed PC, the output energy curves
display extremum behavior both as a function of time as well as randomness. We
explain these effects in terms of two distinct but simultaneous effects which
emerge with increasing randomness, namely the creation of semi-localized modes
and the shrinking (and eventual destruction) of the photonic band-gaps.
Semi-localized (i.e. Anderson localized) modes are seen to arise as a
synchronization of internal modes within a cluster of randomly positioned
dielectric nano-particles. The general trend we observe shows a sharp change of
behavior in the intermediate randomness regime (i.e. )
which we attribute to a similar behavior in the underlying overlap probability
of nano-particlesComment: New published version with a new title. This article is featured on
the cover of the corresponding journal (Nov. issue of EJPB
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …