4 research outputs found
A global synthesis reveals biodiversity-mediated benefits for crop production
Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society. [Abstract copyright: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Data from: Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
AbstractThe idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies
Parasites and Biological Invasions: Predicting Ecological Alterations at Levels From Individual Hosts to Whole Networks
The network approach is increasingly used by food-web ecologists and ecological parasitologists and has shed light on how parasite-host assemblages are organized, as well as on the role of parasites on the structure and stability of food webs. With accelerating rates of nonnative parasites being introduced around the world, there is an increasing need to predict their ecological impacts and the network approach can be helpful in this regard. There is inherent complexity in parasite invasions as parasites are highly diverse in terms of taxa and life strategies. Furthermore, they may depend on their cointroduced host to successfully overcome some crucial steps in the invasion process. Free-living introduced species often experience enemy release during invasion, which reduces the number of introduced parasites. However, introduced parasites that successfully establish may alter the structure of the recipient network through various mechanisms including parasite spill-over and spill-back, and manipulative and nonmanipulative phenotypic alterations. Despite limited literature on biological invasions in infectious food webs, some outstanding methodological issues and the considerable knowledge gaps that remain, the network approach provides valuable insights on some challenging questions, such as the link between structure and invasibility by parasites. Additional empirical data and theoretical investigations are needed to go further and the predictive power of the network approach will be improved by incorporating weighted methods that are based on trophic data collected using quantitative methods, such as stable isotope analyses