20 research outputs found

    A root's ability to retain K+ correlates with salt tolerance in wheat

    Get PDF
    Most work on wheat breeding for salt tolerance has focused mainly on excluding Na+ from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na+ content and wheat salt tolerance. Thus, it appears that excluding Na+ by itself is not always sufficient to increase plant salt tolerance and other physiological traits should also be considered. In this work, it was investigated whether a root's ability to retain K+ may be such a trait, and whether our previous findings for barley can be extrapolated to species following a ‘salt exclusion’ strategy. NaCl-induced kinetics of K+ flux from roots of two bread and two durum wheat genotypes, contrasting in their salt tolerance, were measured under laboratory conditions using non-invasive ion flux measuring (the MIFE) technique. These measurements were compared with whole-plant physiological characteristics and yield responses from plants grown under greenhouse conditions. The results show that K+ flux from the root surface of 6-d-old wheat seedlings in response to salt treatment was highly correlated with major plant physiological characteristics and yield of greenhouse-grown plants. This emphasizes the critical role of K+ homeostasis in plant salt tolerance and suggests that using NaCl-induced K+ flux measurements as a physiological ‘marker’ for salt tolerance may benefit wheat-breeding programmes

    Determinants of change in subtropical tree diameter growth with ontogenetic stage

    Full text link
    We evaluated the degree to which relative growth rate (RGR) of saplings and large trees is related to seven functional traits that describe physiological behavior and soil environmental factors related to topography and fertility for 57 subtropical tree species in Dinghushan, China. The mean values of functional traits and soil environmental factors for each species that were related to RGR varied with ontogenetic stage. Sapling RGR showed greater relationships with functional traits than large-tree RGR, whereas large-tree RGR was more associated with soil environment than was sapling RGR. The strongest single predictors of RGR were wood density for saplings and slope aspect for large trees. The stepwise regression model for large trees accounted for a larger proportion of variability (R 2 = 0.95) in RGR than the model for saplings (R 2 = 0.55). Functional diversity analysis revealed that the process of habitat filtering likely contributes to the substantial changes in regulation of RGR as communities transition from saplings to large trees. © 2014 Springer-Verlag Berlin Heidelberg

    Plant functional and taxonomic diversity in European grasslands along climatic gradients

    Get PDF
    Aim: European grassland communities are highly diverse, but patterns and drivers of their continental-scale diversity remain elusive. This study analyses taxonomic and functional richness in European grasslands along continental-scale temperature and precipitation gradients. Location: Europe. Methods: We quantified functional and taxonomic richness of 55,748 vegetation plots. Six plant traits, related to resource acquisition and conservation, were analysed to describe plant community functional composition. Using a null-model approach we derived functional richness effect sizes that indicate higher or lower diversity than expected given the taxonomic richness. We assessed the variation in absolute functional and taxonomic richness and in functional richness effect sizes along gradients of minimum temperature, temperature range, annual precipitation, and precipitation seasonality using a multiple general additive modelling approach. Results: Functional and taxonomic richness was high at intermediate minimum temperatures and wide temperature ranges. Functional and taxonomic richness was low in correspondence with low minimum temperatures or narrow temperature ranges. Functional richness increased and taxonomic richness decreased at higher minimum temperatures and wide annual temperature ranges. Both functional and taxonomic richness decreased with increasing precipitation seasonality and showed a small increase at intermediate annual precipitation. Overall, effect sizes of functional richness were small. However, effect sizes indicated trait divergence at extremely low minimum temperatures and at low annual precipitation with extreme precipitation seasonality. Conclusions: Functional and taxonomic richness of European grassland communities vary considerably over temperature and precipitation gradients. Overall, they follow similar patterns over the climate gradients, except at high minimum temperatures and wide temperature ranges, where functional richness increases and taxonomic richness decreases. This contrasting pattern may trigger new ideas for studies that target specific hypotheses focused on community assembly processes. And though effect sizes were small, they indicate that it may be important to consider climate seasonality in plant diversity studies

    Scale decisions can reverse conclusions on community assembly processes.

    Get PDF
    AIM: Phylogenetic diversity patterns are increasingly being used to better understand the role of ecological and evolutionary processes in community assembly. Here, we quantify how these patterns are influenced by scale choices in terms of spatial and environmental extent and organismic scales. LOCATION: European Alps. METHODS: We applied 42 sampling strategies differing in their combination of focal scales. For each resulting sub-dataset, we estimated the phylogenetic diversity of the species pools, phylogenetic α-diversities of local communities, and statistics commonly used together with null models in order to infer non-random diversity patterns (i.e. phylogenetic clustering versus over-dispersion). Finally, we studied the effects of scale choices on these measures using regression analyses. RESULTS: Scale choices were decisive for revealing signals in diversity patterns. Notably, changes in focal scales sometimes reversed a pattern of over-dispersion into clustering. Organismic scale had a stronger effect than spatial and environmental extent. However, we did not find general rules for the direction of change from over-dispersion to clustering with changing scales. Importantly, these scale issues had only a weak influence when focusing on regional diversity patterns that change along abiotic gradients. MAIN CONCLUSIONS: Our results call for caution when combining phylogenetic data with distributional data to study how and why communities differ from random expectations of phylogenetic relatedness. These analyses seem to be robust when the focus is on relating community diversity patterns to variation in habitat conditions, such as abiotic gradients. However, if the focus is on identifying relevant assembly rules for local communities, the uncertainty arising from a certain scale choice can be immense. In the latter case, it becomes necessary to test whether emerging patterns are robust to alternative scale choices

    Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands

    No full text
    1. Assembly of grassland communities has long been scrutinized through the lens of functional diversity. Studies generally point to an overwhelming influence of climate on observed patterns of functional diversity, despite experimental evidence demonstrating the importance of biotic interactions. We postulate that this is because most observational studies neglect both scale dependencies of assembly processes and phenotypic variation between individuals. Here, we test for changes in the importance of abiotic filtering and biotic interactions along a stress gradient by explicitly accounting for different scales. In addition to quantifying intraspecific trait variability (ITV), we also vary the two components of spatial scale, including grain (i.e. community size) and extent (i.e. the geographical area that defines the species pool). 2. We sampled 20 grassland communities in ten sites distributed along a 975-m elevation gradient. At each site, we measured seven functional traits for a total of 2020 individuals at different spatial grains. We related community functional diversity metrics to the main environmental gradient of our study area, growing season length (GSL), and assessed the dependence of these relationships on spatial grain, spatial extent and ITV. 3. At large spatial grain and extent, the imprint of environmental filtering on functional diversity became more important with increasing stress (i.e. functional diversity decreased with shorter GSL). At small spatial grain and extent, we found a convex relationship between functional diversity and GSL congruent with the hypothesis that competition is dominant at low-stress levels while facilitative interactions are dominant at high-stress levels (i. e. high functional diversity at both extremes of the stress gradient). Importantly, the effect of intraspecific variability on assembly rules was noticeable only at small spatial grain and extent. 4. Synthesis. Our study reveals how the combination of abiotic stress and biotic interactions shapes the functional diversity of alpine grasslands at different spatial scales, and highlights the importance of phenotype variation between individuals for community assembly processes at fine spatial scale. Our results suggest that studies analysing trait-based assembly rules but ignoring ITV and focusing on a single spatial scale are likely to miss essential features of community diversity patterns

    A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities

    No full text
    Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta‐analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole‐plant (e.g. plant height) vs. organ‐level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait‐based community and ecosystem studies181214061419CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP479083/2008‐8; 141451/2011‐4; 306573/2009‐1; 303534/2012‐5; 303714/2010‐7BEX 7913/13‐3; PNPD 14540132013/50169‐1; 2014/06453‐0We thank Mark Westoby, Ian Wright and three anonymous reviewers for providing valuable comments on an earlier version of the manuscript. AS was supported by the National Science Foundation Graduate Research Fellowship (DGE‐1247399) and NSF grant DEB‐03089. CV was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Program (DiversiTraits project, no. 221060) and by the European Research Council (ERC) Starting Grant Project ‘Ecophysiological and biophysical constraints on domestication in crop plants’ (Grant ERC‐StG‐2014‐639706‐CONSTRAINTS). LC received funding from the European Research Council under the 7th European Community Framework Program FP7/2007‐2013 Grant Agreement no. 281422 (TEEMBIO). Financial support to AF came from the Chilean Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) project No. 1120171. FdB was supported by the Czech Science Foundation, grant P505/12/1296. LWA and BSS were supported by Discovery Grants from the Natural Science and Engineering Research Council of Canada. CS was supported by the Swiss National Science Foundation (PA00P3_136474 and PZ00P3_148261). MBC, MVC, LDSD, VDP and CRF were supported by CAPES‐Brazil (grants BEX 7913/13‐3 and PNPD #1454013) and CNPq‐Brazil (grants 479083/2008‐8, 141451/2011‐4, 306573/2009‐1, 303534/2012‐5 and 303714/2010‐7). MK received support from the JSPS as a Postdoctoral Fellow for Research Abroad. VLD was supported by Sao Paulo Research Foundation (processes: 2013/50169‐1 and 2014/06453‐0). DAP, SJR and NWHM were supported by the New Zealand Ministry of Business, Innovation and Employment core funding to Crown Research Institutes and the Ministry for the Environment. YLBP was supported by the project Postdoc USB (reg.no. CZ.1.07/2.3.00/30.0006) realised through EU Education for Competitiveness Operational Programme and received funding from the European Social Fund and Czech State Budget. The Forest Dynamics Plot of Yasuni National Park has been made possible through the generous support of the Pontifical Catholic University of Ecuador, the government of Ecuador, the Andrew W. Mellon Foundation, the Smithsonian Tropical Research Institute and the University of Aarhus of Denmar
    corecore