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Abstract In 2002, nearly 200 nations signed up to the 2010 target of the Conven-
tion for Biological Diversity, ‘to significantly reduce the rate of biodiversity loss by
2010’. To assess whether the target was met, it became necessary to quantify temporal
trends in measures of diversity. This resulted in a marked shift in focus for biodiver-
sity measurement. We explore the developments in measuring biodiversity that was
prompted by the 2010 target. We consider measures based on species proportions, and
also explain why a geometric mean of relative abundance estimates was preferred to
such measures for assessing progress towards the target. We look at the use of diver-
sity profiles, and consider how species similarity can be incorporated into diversity
measures. We also discuss measures of turnover that can be used to quantify shifts in
community composition arising, for example, from climate change.

Keywords Biodiversity measures · Diversity profiles · Geometric mean · Species
similarity · Turnover measures

1 Introduction

Biodiversity is amulti-dimensional concept, and it is, therefore, unsurprising that there
is a wide variety of biodiversity measures. Many classical measures are functions
of species proportions: if a community of N individuals comprises Ns of species
s, s = 1, . . . , S, then the species proportion is defined to be ps = Ns/N , with
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∑S
s=1 ps = 1. The two classical measures most favoured are the Shannon index (also

called Shannon entropy, Shannon 1948), H = −∑S
s=1 ps log ps , and Simpson’s index

(Simpson 1949), D = ∑S
s=1 p

2
s . Rényi (1961) entropy generalizes Shannon entropy.

Patil and Taillie (1982) formulated diversity measures in terms of average rarity of
the species in a community. They showed that, with different measures of rarity, the
Shannon and Simpson’s indices are both special cases, as is species richness (i.e., the
number of species in the community). Rényi (1961) and Patil and Taillie (1982) also
developed axioms that a diversity measure should meet.

The focus for classical measures, such as Shannon and Simpson’s, is typically on
comparing two communities, and measuring which is the more diverse. This largely
academic exercise was found wanting when in 2002, the Convention for Biological
Diversity (CBD) sets its 2010 target, ‘to significantly reduce the rate of biodiversity
loss by 2010’. Because nations signed up to this commitment, methods were needed
to quantify temporal trends in biodiversity of regions (nations). This raised several
issues.

An obvious issue is that, if all species in a community are declining at the same
rate, the species proportions remain the same (i.e., ps j = ps independent of year j),
so that classical measures based on species proportions show no change. That is, they
do not measure changes in abundance.

When interest is in regional diversity, the Ns (which now represent the number of
individuals of species s in the region) are unknown. At best, they can be estimated
from survey data from a relatively small sample of sites. Often, this is not possible,
but time series of data exist that are believed to reflect temporal trends in abundance
(Magurran et al. 2010). In this case, we can estimate the abundance of species s in
year j relative to year 1: Rsj = Nsj/Ns1 for s = 1, . . . , S, j = 1, . . . , J , where
Nsj is abundance of species s in year j . Assuming that we have a time series of
counts ns j with expectation E

(
ns j

) = αs Ns j , where αs is an unknown constant for

species s, then we can estimate Rsj by R̂s j = ns j/ns1. Now, we cannot estimate
the species proportions (unless αs = α for all s), and, hence, cannot evaluate the
classical biodiversity measures, but we can use as an index of biodiversity in year j ,

the geometric mean of the R̂s j for s = 1, . . . , S: G j = exp
(
1
S

∑S
s=1 log Rsj

)
.

The Living Planet Index (Loh et al. 2005) is a high-profile example of an index that
takes advantage of this approach. The properties of G j as a measure of biodiversity
are explored by Buckland et al. (2005, 2011) and Gregory and Strien (2010).

When a biodiversity survey of a region is conducted according to a randomized
design (Buckland et al. 2012), and data are collected to allowestimation of detectability
(Buckland et al. 2010), then much more can be done than merely plotting the index
G j against year j :

• We can explore how temporal trends vary spatially (Harrison et al. 2014).
• We can use generalized measures based on species proportions to explore how
temporal trends change, as we weight the measure towards the more common
species or the more scarce species in the community (Studeny et al. 2011, 2013).

• We can explore changes in the relative dominance of species by adopting suitable
turnover measures (Yuan et al. 2016), which, for example, allow assessment of
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Measuring temporal trends in biodiversity 463

the effects of climate change on biodiversity, and how these effects vary spatially
(Harrison et al. 2016).

• We can also incorporate changes in absolute abundance into a turnover measure
(Shimadzu et al. 2015).

• Provided we can measure how similar two species are, we can ensure that those
species that contribute most to diversity in terms of their genetic distinctness from
other species also contribute most to our measure (Leinster and Cobbold 2012).

We present here a review of metrics and indices that allow us to exploit biodiversity
data from regional surveys. We start with the geometric mean of relative abundances,
which quantifies the average trend in relative abundance across species. Diversity
profiles allow trends to be explored when rare species are given greater or lesser
weight. Turnover measures allow changes in species composition of a community to
be quantified, as distinct from changes in diversity of the community. We also argue
in favour of measures that quantify both temporal and spatial variability in diversity.
Finally, we introduce measures considering the similarity between species.

2 The geometric mean

The geometric mean index G j is widely used for assessing temporal trends in bio-
diversity. Buckland et al. (2011) showed that, if the total number of species S is
constant, G j < G1 = 1 if and only if the mean of the log abundances in year j is
less than the mean of the log abundances in year 1. Furthermore, if overall abundance
N j = ∑S

s=1 Nsj is constant, then G j < G1 if and only if the mean of the log species
proportions in year j is less than the mean of the log species proportions in year 1.

The mean of the log species proportions has the key property of an evenness mea-
sure, in that it attains its maximum value when all the species proportions are equal:
ps j = 1/S for all s (Smith and Wilson 1996). Thus, when overall abundance and
number of species are constant, G j may be regarded as a measure of the change
in evenness from year 1 to year j (Buckland et al. 2011). When overall abundance
is changing, changes in G j reflect changes in both abundance and evenness. If all
species are declining at the same rate (so that there is no trend in evenness), then G j

will decline at this rate. By contrast, measures that are functions of species proportions
alone will show no trend.

The indexG j is unaffected if detectability varies by species, as it is based onwithin-
species trends; if detectability of individuals of a given species does not change over
time, we do not need to estimate detectability to avoid bias, regardless of whether
detectability varies among species. By contrast, measures based on species proportions
are biased when detectability varies by species, unless counts are corrected using
species-specific estimates of detectability (Buckland et al. 2010). However, if there is
temporal trend in detectability, it becomes important to correct for detectability if we
use G j .

Because G j is based on within-species trends, standardized to a baseline year, it
makes no difference whether we use counts of individuals or biomass to quantify
abundance, provided there is no trend over time within-species in mean weight of
individuals. Further, we can readily combine trends obtained from different surveys:
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464 S. T. Buckland et al.

the geometric mean is a natural method to adopt when we wish to construct composite
indices across surveys, regions, or communities.

A consequence of the above two advantages is that we can combine relative abun-
dance trends from surveys that use different units ofmeasurement. For example, trends
in a plant speciesmight be quantified using percent cover, those for a bird species using
counts, and those for a fish species using biomass. We can legitimately combine these
different trends into a composite index. The different time series also do not need to
span the same time period; if a given time series starts in year k > 1, we simply rescale
the relative abundance estimates from that series, so that the value in year k matches
the value of the composite index in year k.

A limitation of G j is that it cannot be calculated if any of the relative abundance
estimates are zero. Thus, if a species is not recorded in a given year, the index cannot
be evaluated. We could add a small quantity to zeros (O’Brien et al. 2010), but the
index is sensitive to the quantity chosen, and has poor precision if rarely recorded
species are included. Hence typically, species with small sample sizes in some or all
years are excluded from analysis. Thus, G j is not a useful measure if primary interest
is in rare, or rarely recorded, species, or in species that are not consistently present in
the community. However, most biodiversity measures perform poorly in such cases.
The index G j gives equal weight to all species, and so, is sensitive to changes in
rarely recorded species, but is also adversely affected if lack of data on rarely recorded
species results in imprecise and possibly biased estimates of trend; by contrast, indices
based on species proportions are typically insensitive to changes in rarely recorded
species, and largely unaffected by unreliable estimation of trends for such species. If
we include rarely recorded species when calculating G j , problems are reduced but
not eliminated by developing a model for counts, and replacing the observed counts
by the corresponding predicted counts before evaluating the index (Buckland et al.
2011). A species that becomes too rare to monitor reliably can be dropped from the
index, while a species that becomes sufficiently common to monitor can be added, so
that the set of species monitored changes over time.

3 Diversity profiles

A single biodiversity measure cannot encapsulate the multivariate information in the
data. For this reason, diversity profiles can be more useful (Tóthmérész 1995). If a
measure is defined with a free parameter, then it can be plotted against that parameter,
to show how the measure changes. For example, Hill’s diversity family links species
richness, the Shannon and Simpson’s indices, and the Berger–Parker dominance mea-
sure via a free parameter λ, and allows investigators to construct a diversity profile of
a community (Hill 1973). The Hill numbers refer to the value of the profile at spe-
cific values of the free parameter: λ = −∞ gives the reciprocal of the proportional
abundance of the rarest species; λ = 0 gives the number of species (species richness);
λ = 1 gives the exponential of the Shannon index; λ = 2 gives the reciprocal of
Simpson’s index; and λ = ∞ gives the reciprocal of the proportional abundance of
the most common species.
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Jost (2006) showed the generality of the Hill numbers for quantifying diversity,
where diversity is the effective number of species in a community (the number of
equally abundant species that would be needed to give the same value of the diversity
measure). Leinster and Cobbold (2012) introduced a general measure which incor-
porates species similarity; when similarities among species are all set to zero, their
measure is equivalent to the Hill numbers. They further note that many existing mea-
sures are special cases of the Hill numbers or closely related to them. Chao et al.
(2014a) also demonstrated how the Hill numbers can be used to unify measures of
species diversity, phylogenetic diversity, and distance-based functional diversity. Chao
et al. (2014b) unified two fundamental frameworks for themeasurement and estimation
of species diversity: Hill numbers and rarefaction/extrapolation.

Diversity profiles typically represent a trend from species richness towards the
dominance of one species, thus combining different aspects of the species abundance
distribution. For a perfectly even communitywith no dominant species, such a profile is
flat. The family of divergence measures of Studeny et al. (2011) quantifies the relative
contributions of dominant and rare species to unevenness. Thus, it can distinguish
between communities with a few highly dominant species from those where common
species are fairly balanced in abundance, with the main contribution to unevenness
coming from the rare species. We can then explore time trends for different choices of
the free parameter, representing separate trends in dominant and rare species. We can
also generate a three-dimensional plot, with time on the x-axis, the free parameter on
the y-axis, and the measure on the z-axis, showing how the profile changes over time
(Studeny et al. 2011).

Studeny et al. (2011) adapted the power divergence statistics of Cressie and Read
(1984) for their divergence measure. Cowell (1980) used the same measure in econo-
metrics. Hill’s numbers have advantages: they can be interpreted as the number of
effective species; they are members of a more general family of diversities (Lein-
ster and Cobbold 2012; Chao et al. 2014a); and reduced-bias estimators are available
(Chao and Jost 2015). Marcon et al. (2014a) showed that the Hill numbers are the
deformed exponential of Tsallis entropy (Tsallis 1988), whereas they are the expo-
nential ofRényi’s entropy (Patil andTaillie 1982). The relation betweenTsallis entropy
and the Hill numbers is continuous and strictly increasing (Jost 2006), so a bijective
relation exists between entropy and diversity. It can be shown algebraically that the
measure of Studeny et al. is also closely related to Tsallis entropy. Theil (1967)’s
entropy, used by economists, is the difference between the Shannon index (entropy)
and its maximum value (logeS, which occurs for a perfectly even community). Up
to a constant factor equal to 1

λSλ−1 , the measure of Studeny et al. of order λ − 1 is
the difference between the Tsallis entropy of order λ and its maximum value (the
deformed logarithm of order λ of the number of species). Thus, it generalizes the
Theil entropy.

4 Measuring turnover

Classical biodiversity measures, such as the Shannon index and Simpson’s index,
ignore species identity. Thus, if the species abundance distribution is the same at two
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time points, but abundances of individual species have changed, such measures show
no change. If climate change causes some species to become more common while
others become rarer, we require different measures to quantify change.

Additive partitioning of regional (gamma) diversity into local (alpha) and spatially
varying (beta) diversity was proposed by Lande (1996). Jost (2007) proposed a multi-
plicative partitioning, such that beta diversity is the effective number of communities
in the region. Chalmandrier et al. (2015) further explored the multiplicative approach,
developing methodology for decomposing phylogenetic and functional diversity over
space and time, and obtaining measurements of beta diversity which are independent
of gamma diversity and alpha diversity. Tuomisto (2010a) noted that beta diversity has
been used to refer to ‘a wide variety of phenomena’; to define the term, he proposed a
framework for the umbrella concept of beta diversity. In a second paper, he addressed
issues related to quantifying beta diversity from data (Tuomisto 2010b). Jost et al.
(2010) reviewed the issue of compositional similarity, as it relates to beta diversity.

Beta diversity is concerned with spatial turnover. In the context of CBD targets, we
are interested in temporal turnover, and how that varies spatially.Anderson et al. (2011)
showed how beta diversity measures can be used to quantify turnover in community
structure through time. However, unlike time, space has no natural order (Dornelas
et al. 2013); temporal measures that change if time is reversed are not appropriate
measures of beta diversity.

An example of a spatial turnover measure is Bray–Curtis dissimilarity (Bray and
Curtis 1957; Gower and Legendre 1986), which is a simple index for quantifying the
dissimilarity between two communities A and B.When applied to species abundances

NsA and NsB , it is given by 1 − 2
∑S

s=1 min(NsA,NsB )
∑S

s=1 NsA+∑S
s=1 NsB

; when applied to species propor-

tions, psA and psB , it becomes simply 1 − ∑S
s=1 min (psA, psB). It, thus, takes the

value zero when two communities have the same composition, and the value one when
no species are in common to the two communities. A measure of difference between
two communities can also be applied to quantify change between two time points of
a single community. Carranza et al. (2007) considered temporal turnover, quantifying
temporal change in land cover using Rényi’s generalized entropy function (1961).

Many turnover measures are based on recorded range changes, so that the measures
reflect changes in the species present in a community. This is unsatisfactory when tem-
poral biodiversity changes within regions are of interest. First, at the regional level,
extinctions and colonizations tend to be relatively rare events, and second, regional
surveys tend to sample a very small proportion of the region, so that there is con-
siderable uncertainty over when extinction and colonization events occur (Harrison
et al. 2016). Measures based on the changes that each species shows in its species
proportion between two time points (Yuan et al. 2016) are more useful in this context.

Denote the species proportion vector in year j by p j = (
p1 j , . . . , pSj

)
and the

turnover measure between year j1 and year j2 by d
(
p j1 ,p j2

)
. Yuan et al. (2016)

argued that we would like the measure to be a metric, with the following properties:

1. Positive definiteness d
(
p j1 ,p j2

)
> 0 for any p j1 �= p j2 and d

(
p j1 ,p j2

) = 0 if
and only if p j1 = p j2.

2. Symmetry d
(
p j1 ,p j2

) = d
(
p j2 ,p j1

)
for any p j1 �= p j2.
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3. Triangle inequality d
(
p j1 ,p j3

) ≤ d
(
p j1 ,p j2

) + d
(
p j2 ,p j3

)
.

Further properties proposed by Yuan et al. are: scale invariance, which ensures,
for example, that d

(
p j1 ,p j2

) = d
(
N j1,N j2

)
, where the abundance vector N j =

(
N1 j , . . . , NSj

)
and p j = N j/

S∑

s=1
Nsj ; invariance to coordinate scaling, so that, for

example, d
(
p j1 ,p j2

) = d
(
n j1 ,n j2

)
, where n j is the vector of species counts in

year j , with equality holding even if individuals of one species are more detectable
than individuals of another; and permutation invariance, so that turnover measures are
unchanged if the species ordering is changed.

Yuan et al. (2016) considered the following families of measures, and listed which
of the above properties each measure satisfies.
The Lq-distance measure

dq
(
p j1 ,p j2

) =
∣
∣
∣
∣p j1 − p j2

∣
∣
∣
∣
q∣

∣
∣
∣p j1

∣
∣
∣
∣
q + ∣

∣
∣
∣p j2

∣
∣
∣
∣
q

where ||p||q =
(

S∑

s=1

|ps |q
)1/q

with q > 0.

Its range spans [0,1], where 0 corresponds to no turnover, while 1 corresponds to
100% turnover. It is a metric only if q = 1: d1

(
p j1 ,p j2

) = 1
2

∑S
s=1

∣
∣ps j1 − ps j2

∣
∣ =

1 − ∑S
s=1 min

{
ps j1 , ps j2

}
, which is the Bray–Curtis dissimilarity (Bray and Curtis

1957) between the two time points, when applied to species proportions. Another
special case of interest is q = 2, when the numerator is the Euclidean distance between

the vectors (Pavoine et al. 2004): d2
(
p j1 ,p j2

) =
√∑S

s=1
(
ps j1−ps j2

)2

√∑S
s=1 p2s j1

+
√∑S

s=1 p2s j2

.

The angular turnover measure

dcos
(
p j1 ,p j2

) = 1 − cos θ = 1 −
∑S

s=1 ps j1 ps j2√(∑S
s=1 p

2
s j1

) (∑S
s=1 p

2
s j2

)

where θ is the angle between p j1 and p j2 in an open simplex of dimension S− 1. The
range is again [0,1].

Pairwise angular measure

dsin
(
p j1 ,p j2

) = 1

S (S − 1)

∑S

s=1

∑S

t=1

∣
∣ps j1 pt j2 − ps j2 pt j1

∣
∣

√(
p2s j1 + p2t j1

) (
p2s j2 + p2t j2

) .

This measure is undefined if a species is absent at both time points, or if more than one
species is absent at one of the time points. A value of zero corresponds to no turnover,
and one is an upper bound for the measure, but if there are more than two species, it
cannot attain this upper bound.
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Scaled centred-logratio measure

dclrS2

(
p j1 ,p j2

) =
√

1

S (S − 1)

∑S

s=1

∑S

t=1

[

log
ps j1
ps j2

− log
pt j1
pt j2

]2
.

This is the only measure considered by Yuan et al. (2016), which satisfies all six
properties listed above. However, it is undefined if any species proportion is zero, and
it can take any non-negative real value (with zero corresponding to no turnover), while
most measures span the interval from zero (no turnover) to one (100% turnover).

Kullback–Leibler divergence measure
The Kullback–Leibler divergence measure may be expressed as

∑S
s=1 ps j1 log

ps j1
ps j2

.

This is asymmetric—if time is reversed, the value changes. We obtain a symmetric
measure by taking the sumof the contribution to themeasure by each species, averaged
over the measure, and its time-reversed equivalent:

DKL
(
p j1 ,p j2

) = 1

2

S∑

s=1

(
ps j1 − ps j2

)
log

ps j1
ps j2

which may be expressed as

DKL
(
p j1 ,p j2

) = 1

2

(
Hj1 + Hj2

) −
S∑

s=1

(
ps j1 log ps j2 + ps j2 log ps j1

)

where Hj is the Shannon index in year j . As the Shannon index does not incorporate
species identity, the information on turnover is entirely within the final sum. This
measure is also undefined if any species proportions are zero, and it can take any
non-negative real value, with zero corresponding to no turnover.

The asymmetric measure of Shimadzu et al.
Shimadzu et al. (2015) also proposed a measure that incorporates species proportions.
They argued that, unlike for spatial turnover measures, temporal measures need not
be symmetric. That is if time is reversed, there is no imperative for the measure to
be unaltered. Their measure can be expressed as the sum of two components. One
component is a function of species proportions:

D1
(
p j1 ,p j2

) = −
S∑

s=1

ps j1 log
ps j1
ps j2

.

Thus, this component is (apart from sign) the Kullback–Leibler divergence measure.
It is never positive, and takes the value zero only when there is no turnover. The second
component is a function of expected overall abundance of the S species at two time
points j1 and j2:

D2
(
λ j1, λ j2

) = log
λ j2

λ j1
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where λ j = ∑s
s=1λs j and λs j = E(Nsj ). This component can take any real value.

Thus, the measure D1
(
p j1,p j2

) + D2
(
λ j1, λ j2

)
can also take any real value. In par-

ticular, it is not constrained to be positive. The measure is zero when both components
are zero, which occurswhen bothp j1 = p j2 andλ j1 = λ j2 (i.e., no change). However,
it is also zero if D1

(
p j1,p j2

)
< 0 and D2

(
λ j1, λ j2

) = −D1
(
p j1,p j2

)
> 0. Note

that if species proportions stay the same, but abundance changes (i.e., all species have
the same trend in abundance), then the measure gives negative turnover for decreasing
abundance, and positive turnover for increasing abundance.

Which measure?
Given the large number of potential measures for quantifying temporal turnover, some
guidance is, perhaps, needed. We do not favour using the asymmetric measure of Shi-
madzu et al. (2015). While we accept their argument that it is not essential for a
measure of temporal turnover (as distinct from spatial turnover) to satisfy the symme-
try property, nevertheless, we believe that interpretation of changes is helped using a
symmetric measure. Furthermore, a measure that can give a zero estimate of turnover
when increases in abundance offset changes in species proportions seems unsatisfac-
tory.

If we wish our turnover measure to be sensitive to changes among rare species,
then a pairwise measure should be the preferred choice. The pairwise angular measure
satisfies properties 1–4, and is restricted to the range [0,1], but, in general, cannot
attain a value of one, and cannot be interpreted as an absolute measure of turnover
(for which zero should correspond to no turnover, and one to 100% turnover, with
no species in common between the two time points). The centred-log-ratio measure
satisfies all six properties, but it has no upper limit, so is also best considered a relative
measure of turnover.

If precision is more important than sensitivity to rare species, then the angular
measure or the Lq -distance measure should be used. Both are absolute measures of
turnover. For the latter measure, if we take q = 2, it has the added advantage that
it can be extended to incorporate species similarities (below). A choice of q = 1
gives a measure that is less sensitive to those species that show very big changes. This
sensitivity is reduced further for choices of q in the range (0,1) (Royden 1968).

5 Spatial variation in temporal trends

Another consequence of considering biodiversity trends of regions as distinct from
sites is that there is interest in how the temporal trends vary across the region. To assess
this, we need spatial models, allowing the density of each species to be estimated at any
location in the region. This allows any of the above diversity or turnover measures to
be evaluated at any location. This approach was used in conjunction with generalized
additive models to assess how diversity trends (Harrison et al. 2014) and turnover
(Harrison et al. 2016) of breeding birds varied by 100km square throughout Great
Britain. Yuan et al. (unpublished) used R-INLA (Rue et al. 2009) to fit spatio-temporal
models to quantify how temporal changes in commercial fish diversity varied through
the North Sea.
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Chalmandrier et al. (2015) proposed a multiplicative decomposition over space
and time of the exponential of Shannon entropy. Their methods allow regions with
relatively rapid temporal change, or with high beta diversity, to be identified.

Note the distinction between spatial variation in temporal trends of biodiversity and
spatial trends. Leitão et al. (2015) develop SparseGeneralisedDissimilarityModelling
for quantifying spatial trends.

6 Incorporating species similarity

Leinster and Cobbold (2012) define a similarity matrix Z, where the element zst is
the similarity between species s and t , where zss = 1 and 0 ≤ zst ≤ 1. They do not
assume that this matrix is symmetric. They then define diversity of order q to be

q DZ (p) =
(

S∑

s=1

ps (Zp)
q−1
s

)1/(1−q)

, 0 ≤ q < ∞, q �= 1,

where (Zp)s = ∑S
t=1 zst pt , which is the expected similarity between an individual

of species s and an individual chosen at random. By taking limits, they also define the
index for q = 1 and ∞.

Pavoine andRicotta (2014) introduced a family of similaritymeasures, by extending
the dissimilarity coefficient of Gower and Legendre (1986). It provides a framework
for comparing the traditional compositional turnover with functional or phylogenetic
similarities among communities.

Yuan et al. (2016) propose a modification of the L2-distance measure d2
(
p j1,p j2

)

to take account of species similarity when quantifying turnover. By noting that the
expressions in d2

(
p j1 ,p j2

)
may be written as quadratic forms, we can write

d2sim
(
p j1 ,p j2

) =

√
∑S

t=1(pt j1 − pt j2)
(∑S

s=1(ps j1 − ps j2)zst
)

√
∑S

t=1 pt j1
(∑S

s=1 ps j1 zst
)

+
√

∑S
t=1 pt j2

(∑S
s=1 ps j2 zst

)

=
√

(p j1 − p j2)
TZ(p j1 − p j2)

√
pTj1Zp j1 +

√
pTj2Zp j2

.

If Z is the identity matrix, then the measure is unaltered. However, we can define the
element zst of Z to be the similarity between species s and t , where zss = 1, zst = zts
and 0 ≤ zst < 1 for s �= t . The matrix Z should be chosen so that it is positive
definite, which ensures that the quadratic forms are positive. This is closely related to
the methods of Pavoine and Ricotta (2014).

For the above methods, we need to quantify the similarity of species. As discussed
by Leinster and Cobbold (2012), methods for quantifying similarity might be genetic,
functional, taxonomic, morphological, or phylogenetic. Similarity matrices are often
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derived from distance matrices whose elements are dst , as discussed in depth by
Leinster and Cobbold (2012). The most common transformation is zst = 1 − dst .

Building the distance matrix by representing the species in the multi-dimensional
space of traits is a classical approach (Gower 1971) that ensures that the distance
matrix is Euclidean and the similarity matrix is positive definite. Ultrametric distances
obtained from a phylogeny can also be transformed into a similarity matrix (Leinster
and Cobbold 2012), although it is not symmetric. Addressing non-ultrametric phylo-
genies (Chao et al. 2010) is controversial (Leinster and Cobbold 2012; Marcon and
Hérault 2015), since they result in matrices Z that are not similarities (some zst are
greater than 1) and depend on the frequencies of species.

Marcon and Hérault (2015) considered the partitioning of phylogenetic diversity,
in which species-relatedness is considered, and Marcon et al. (2014b) addressed the
partitioning and estimation of similarity-based diversity as defined by Leinster and
Cobbold (2012).

7 Discussion

The classical work on measuring diversity tends to be focussed on comparing species
assemblages at selected sites. For assessing progress towards CBD targets, we are
interested in temporal trends in biodiversity of regions (nations). Thus,weneed surveys
designed to allow the diversity of regions to be quantified. The UK Breeding Bird
Survey is an excellent example of what can be achieved: around 3000 1km squares
are surveyed each year, according to a stratified random sampling scheme. In each
sampled square, a volunteer carries out a line transect survey along two lines, each
of length 1km. It illustrates that ‘citizen science’ surveys can generate good-quality
data to allow assessment of progress towards targets. We expect to see a growth in
ambitious surveys of this type, to span other regions and taxa. This will lead to a greater
demand for statistical methodologies for measuring temporal trends in the diversity
of regions.

Species richness has played a prominent role in biodiversitymeasurement. It has the
advantage that no abundance estimates are required; we simply need a list of species
present. When small sites are being monitored, it may be practical to list all species of
a community, or to adopt methods for estimating the number of species present. When
quantifying the biodiversity of regions, with a focus on temporal changes, it is more
difficult to achieve reliable inference based on species richness. Furthermore, at the
national level, the number of species in a community typically varies little over short
timescales, whereas species abundances (and hence proportions) tend to vary more
rapidly, so that surveys that enable abundance estimation are able to identify change
more quickly.

Biodiversity may be quantified in many ways. Its multi-dimensional nature means
that no single measure can meet all needs for assessing change. It is important that
measures are selected, taking account of what types of changes are of interest. Thus,
consideration should be given to the following issues:

• Are changes in common species of greater or lesser importance than changes in
scarce species?
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• Is species identity important, or is the priority simply to maintain diversity levels,
regardless of species composition?

• Is it important to identify shifts in community structure, for example, away from
specialist and towards generalist species?

• Do you wish to assign greater weight to certain species? If so, is there an objective
way to set weights?

• Do you wish to identify the effects of environmental change such as climate change
on communities?

• Do you wish to quantify changes arising from changes in land-use management?

Classical measures based on species proportions have good precision for quantifying
changes in evenness, and are robust to uncertain estimation for rare species. How-
ever, they are also insensitive to change among rare species, and the measures do
not incorporate species identity, and so are ineffective at identifying changes result-
ing from environmental or land-use change, unless such changes affect evenness or
species richness. Turnover measures are more appropriate for quantifying change aris-
ing from environmental or land-use change. Pairwise turnover measures are sensitive
to changes amongst rarer species in a community, but they also typically have lower
precision than other turnovermeasures. Turnovermeasures also offer options for quan-
tifying spatial trends, temporal trends, and/or spatio-temporal trends in biodiversity.
For example, we may wish to explore how temporal trends vary spatially, or how spa-
tial trends vary in time. The geometric mean is appropriate if an index that is sensitive
to changes in overall abundance is required; it gives equal weight to all species, and
as a consequence, it also reflects changes in evenness. Its precision is reduced if rarer
species are included in the analysis, and it cannot accommodate abundance estimates
of zero. The geometric mean, as with some other measures, can be weighted to allow
different species to have different weights (Buckland et al. 2012).

We have presented major aspects of biodiversity that should be considered to assess
temporal trends in the context of Convention for Biological Diversity targets. These
are the ability to include similarity between species; to reflect adequately changes
in the relative abundance of rare species; to account for varying abundances; and to
measure turnover. The literature of diversity measurement is extensive, and yet we
do not have a unified approach that incorporates these aspects in a single coherent
framework.
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