202 research outputs found
Dynamics of cubic-tetragonal phase transition in KNbO perovskite
The low-energy part of the vibration spectrum in KNbO was studied by cold
neutron inelastic scattering in the cubic phase. In addition to acoustic
phonons, we observe strong diffuse scattering, which consists of two
components. The first one is quasi-static and has a temperature-independent
intensity. The second component appears as quasi-elastic scattering in the
neutron spectrum indicating a dynamic origin. From analysis of the inelastic
data we conclude that the quasi-elastic component and the acoustic phonon are
mutually coupled. The susceptibility associated with the quasi-elastic
component grows as the temperature approaches T
Polarization Dependence of Born Effective Charge and Dielectric Constant in KNbO
The Born effective charge Z^{*} and dielectric tensor \epsilon_{\infty} of
KNbO_3 are found to be very sensitive to the atomic geometry, changing by as
much as 27% between the paraelectric cubic and ferroelectric tetragonal and
rhombohedral phases. Subtracting the bare ionic contribution reveals changes of
the dynamic component of Z^{*} as large as 50%, for atomic displacements that
are typically only a few percent of the lattice constant. Z^{*},
\epsilon_{\infty} and all phonon frequencies at the Brillouin zone center were
calculated using the {\it ab initio} linearized augmented plane-wave linear
response method with respect to the reference cubic, experimental tetragonal,
and theoretically determined rhombohedral ground state structures. The ground
state rhombohedral structure of KNbO_3 was determined by minimizing the forces
on the relaxed atoms. By contrast with the cubic structure, all zone center
phonon modes of the rhombohedral structure are stable and their frequencies are
in good agreement with experiment. In the tetragonal phase, one of the soft
zone center modes in the cubic phase is stablized. In view of the small atomic
displacements involved in the ferroelectric transitions, it is evident that not
only the soft mode frequencies but also the Born effective charge and
dielectric constants are very sensitive to the atomic geometry.Comment: 26 pages, revtex, no figures; to appear in Phys. Rev. B15 (Oct.),
199
Emulating opportunistic networks with KauNet Triggers
In opportunistic networks the availability of an end-to-end path is no longer required. Instead opportunistic networks may take advantage of temporary connectivity opportunities.
Opportunistic networks present a demanding environment for network emulation as the traditional emulation setup, where application/transport endpoints only send and receive packets from the network following a black box approach,
is no longer applicable. Opportunistic networking protocols
and applications additionally need to react to the dynamics of the underlying network beyond what is conveyed through the exchange of packets.
In order to support IP-level emulation evaluations of applications and protocols that react to lower layer events, we have proposed the use of emulation triggers. Emulation triggers can emulate arbitrary cross-layer feedback and can be synchronized with other emulation effects. After introducing the design and implementation of
triggers in the KauNet emulator, we describe the integration of triggers with the DTN2 reference implementation and illustrate how the functionality can be used to emulate a classical DTN data-mule scenario
Performance evaluation of IB-DFE-based strategies for SC-FDMA systems
The aim of this paper is to propose and evaluate multi-user iterative block decision feedback equalization (IB-DFE)
schemes for the uplink of single-carrier frequency-division multiple access (SC-FDMA)-based systems. It is assumed
that a set of single antenna users share the same physical channel to transmit its own information to the base
station, which is equipped with an antenna array. Two space-frequency multi-user IB-DFE-based processing are
considered: iterative successive interference cancellation and parallel interference cancellation. In the first approach,
the equalizer vectors are computed by minimizing the mean square error (MSE) of each individual user, at each
subcarrier. In the second one, the equalizer matrices are obtained by minimizing the overall MSE of all users at each
subcarrier. For both cases, we propose a simple yet accurate analytical approach for obtaining the performance of
the discussed receivers. The proposed schemes allow an efficient user separation, with a performance close to the
one given by the matched filter bound for severely time-dispersive channels, with only a few iterations
First results of undersea muography with the Tokyo-Bay Seafloor Hyper-Kilometric Submarine Deep Detector
Tidal measurements are of great significance since they may provide us with essential data to apply towards protection of coastal communities and sea traffic. Currently, tide gauge stations and laser altimetry are commonly used for these measurements. On the other hand, muography sensors can be located underneath the seafloor inside an undersea tunnel where electric and telecommunication infrastructures are more readily available. In this work, the world’s first under-seafloor particle detector array called the Tokyo-bay Seafloor Hyper-Kilometric Submarine Deep Detector (TS-HKMSDD) was deployed underneath the Tokyo-Bay seafloor for conducting submarine muography. The resultant 80-day consecutive time-sequential muographic data were converted to the tidal levels based on the parameters determined from the first-day astronomical tide height (ATH) data. The standard deviation between ATH and muographic results for the rest of a 79-day measurement period was 12.85 cm. We anticipate that if the length of the TS-HKMSDD is extended from 100 m to a full-scale as large as 9.6 km to provide continuous tidal information along the tunnel, this muography application will become an established standard, demonstrating its effectiveness as practical tide monitor for this heavy traffic waterway in Tokyo and in other important sea traffic areas worldwide
Avoiding pitfalls in interdisciplinary education
As the world's social-environmental problems increasingly extend across boundaries, both disciplinary and political, there is a growing need for interdisciplinarity, not only in research per se, but also in doctoral education. We present the common pitfalls of interdisciplinary research in doctoral education, illustrating approaches towards solutions using the Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER) research network as a case study. We provide insights and detailed examples of how to overcome some of the challenges of conducting interdisciplinary research within doctoral studies that can be applied within any doctoral/postdoctoral education programme, and beyond. Results from a self-evaluation survey indicate that early-career workshops, annual meetings and research visits to other institutions were the most effective learning mechanisms, whereas single discipline-focused courses and coursework were among the least effective learning mechanisms. By identifying the strengths and weaknesses of components of NorMER, this case study can inform the design of future programmes to enhance interdisciplinarity in doctoral education, as well as be applied to science collaboration and academic research in general.Peer reviewe
- …