

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers
and makes it freely available over the web where possible.

This is an author -deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 4336

To link to this article: DOI: 10.1155/2011/347107

URL: http://dx.doi.org/10.1155/2011/347107

To cite this version: PERENNOU Tanguy, BRUNSTROM Anna, HALL Tomas,
GARCIA Johan, Hurtig Per. Emulating opportunistic networks with KauNet Triggers.
EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN),
2011, vol. 2011, n° 2011, pp. 1-15.
ISSN 1687-1472

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12042254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:staff-oatao@inp-toulouse.fr
http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1155/2011/347107

Emulating Opportunistic Networks with KauNet Triggers

Tanguy Pérennou
LAAS-CNRS & ISAE

Université de Toulouse,
France

tanguy.perennou@laas.fr

Anna Brunstrom
Department of Computer

Science
Karlstad University, Sweden

anna.brunstrom@kau.se

Tomas Hall
Department of Computer

Science
Karlstad University, Sweden

tomas.hall@kau.se

Johan Garcia
Department of Computer

Science
Karlstad University, Sweden
johan.garcia@kau.se

Per Hurtig
Department of Computer

Science
Karlstad University, Sweden

per.hurtig@kau.se

ABSTRACT
In opportunistic networks the availability of an end-to-end
path is no longer required. Instead opportunistic networks
may take advantage of temporary connectivity opportuni-
ties. Opportunistic networks present a demanding environ-
ment for network emulation as the traditional emulation
setup, where application/transport endpoints only send and
receive packets from the network following a black box ap-
proach, is no longer applicable. Opportunistic networking
protocols and applications additionally need to react to the
dynamics of the underlying network beyond what is con-
veyed through the exchange of packets. In order to support
IP-level emulation evaluations of applications and protocols
that react to lower layer events, we have proposed the use
of emulation triggers. Emulation triggers can emulate ar-
bitrary cross-layer feedback and can be synchronized with
other emulation effects. After introducing the design and
implementation of triggers in the KauNet emulator, we de-
scribe the integration of triggers with the DTN2 reference
implementation and illustrate how the functionality can be
used to emulate a classical DTN data-mule scenario.

1. INTRODUCTION
Opportunistic networks have received a great deal of atten-
tion within the research community in recent years. These
networks are characterized by the opportunistic use of net-
works or other resources as they become available. In con-
trast to traditional networks, opportunistic networks do not
require an end-to-end path to be available between the com-
municating application end points, but may instead rely on
intermittent connectivity. The availability/unavailability of
communication opportunities is typically caused by some
form of mobility. One of the most well known examples of
opportunistic networks is Delay/Disruption Tolerant Net-
works (DTN) [1, 2]. The DTN architecture [2] defines a

message-based overlay, the bundle layer, that can operate
over a collection of networks of different types and which
can each use its own protocol stack internally. DTNs may
be characterized by occasional connectivity, high and vari-
able delays and asymmetric data rates. Oppnets [3] is an-
other example of opportunistic networks, in which a small
seed network is deployed and then opportunistically expands
itself to include additional nodes and resources as needed.
Oppnets thus do not only use communication opportunities,
but the network is also opportunistically enlarged in order
to acquire the resources necessary to carry out a specific
application task.

In general, evaluating the performance of any communica-
tion system is challenging due to the complexities and num-
ber of variables involved. Performance can be evaluated by
several metrics and at several levels of abstraction ranging
from analytical evaluation, via simulation, experiments in
an emulated environment, up to full scale live experiments.
As opposed to analytical modeling and simulation, the em-
ulation approach uses a mixture of real entities and abstrac-
tions.

Emulation of communication systems can take place at dif-
ferent levels of abstraction: researchers have developed so-
lutions ranging from physical-level to transport-level emula-
tion, including link-level and network-level emulation. For
many performance evaluation tasks, emulating communica-
tion systems is an attractive approach, since it allows parts
of the evaluated system to be real entities capturing all their
inherent complexity. Other parts of the system may be ab-
stracted to a degree, and the behaviors of these abstracted
parts are emulated. In comparison to real live tests, em-
ulation is typically less expensive to perform and produces
more easily reproducible results.

Few examples of physical-level emulation exist, mainly fo-
cusing on wireless networks. The most well-known physical-
level emulation system is ORBIT [4], a radio grid testbed
developed for scalable and reproducible evaluation of next-
generation wireless network protocols. In particular, Orbit
uses radio signal attenuators that allow to mimic distance
and radio signal propagation conditions over a wireless net-
work. JEmu [5] is another type of physical-level emulator:

a virtual radio layer is inserted below the MAC layer and
intercepts outgoing MAC frames generated by the commu-
nication stack. These frames are re-encapsulated and sent
via TCP/IP and an Ethernet LAN to a central emulation
node which decides whether to relay them to the destination
or not, according to the emulated mobility and propagation
conditions. In both examples, it is possible to use a specific
routing protocol such as DSR.

Link- or MAC-level emulation is widely used to evaluate real
implementations of routing protocols. It abstracts away the
physical and data link layers. Most existing solutions are
based on a distributed architecture where a virtual MAC
layer is embedded on each terminal. For instance, EMWin [6]
is fully distributed across the end nodes and emulates the
medium access CSMA/CA on an Ethernet experimentation
testbed. Each terminal has a neighbor table evolving over
time, and the virtual MAC layer uses it to determine whether
frames to the next hop are lost or not.

Network- or IP-level emulation is targeted at the evaluation
of transport protocols or distributed applications. It is based
on only a few parameters, mainly: bandwidth, delays, and
packet losses, which are the effects perceived at the trans-
port level. Traffic shapers such as Dummynet [7], NetEm [8],
ModelNet [9] or NISTNet [10] can enforce such parameters
on real IP packets that pass through the shaper. In addition,
Netbed/Emulab [11] or ModelNet [9] are large testbeds fed-
erating and coordinating several such traffic shapers, using
various approaches to dynamically configure a traffic shaper
during emulation. In [12] a trace-based emulation system
using traffic shapers is proposed, where the parameters used
are derived from previously captured traces. The traces are
processed during a so-called “distillation” phase to produce
an emulation model made of bandwidth, delays and losses,
that will be interpreted by the traffic shaping part of the
emulator. This allows the reproduction of the conditions
that were captured with the original traces. Finally, some
IP-level emulation systems are based on real-time discrete
event simulation, like NCTUns [13].

Transport-level emulation is quite rare, although recently
Xylomenos and Cici developed a transport-level emulator to
test Publish/Subscribe mechanisms in the context of Content-
Centric Networking [14]. This transport-level emulator has
the same interface as the Socket API, and allows packets ad-
dressed to some IP address and port number to be diverted
to a specific library.

The variety of existing emulation systems reflects a variety of
conflicting requirements. Researchers needing very detailed
models or testing low-level protocols will resort to the low-
est abstraction level possible, in order to have a maximum
number of concrete components activated in the communi-
cation stack. However, such emulation systems are difficult
and expensive to deploy, and their management and config-
uration are complex. When choosing higher-level emulation
systems, researchers work at a higher abstraction level which
improves ease of use. As long as the important characteris-
tics for the study at hand are still captured by the emulation
system, the obtained results will still be valid. In this pa-
per, we will focus on IP-level emulation for opportunistic
networks. At that abstraction level we will abstract away

the physical environment as well as the lower layers of the
communication stacks at the participating nodes. The aim
is to support efficient evaluation of higher layer protocols
and applications, such as applications using the DTN bun-
dle protocol.

Examining the literature on opportunistic networking re-
veals that very few studies in this field are based on IP-level
emulation. In [15], the preliminary DTN reference imple-
mentation has been tested in the Emulab [16] environment.
NASA Glenn Research Center has developed the Channel
Emulator [17] on top of NetEm [8] as part of the end-to-
end Network Emulation Laboratory [18]. In these works
it is not explicitly described how disconnections are made.
In [19], the experimental setup uses link-level emulation with
a Spirent SX equipment emulating a Earth-LEO satellite
link. Opportunistic networks pose a difficult challenge for
IP-level emulation, as the traditional end-to-end communi-
cation path is no longer present and the nodes in the network
need to react to dynamically appearing communication op-
portunities. Hence, the typical network black box approach
used in IP-level emulation, where application/transport end-
points interact with the network only by sending and receiv-
ing packets, may no longer be sufficient. Instead many op-
portunistic networking protocols and applications need to
react to the dynamics of the underlying network beyond
what is conveyed through the exchange of packets.

The concept of emulation triggers as a mean for supporting
emulation of opportunistic networking configurations that
are dependent on lower layer dynamics was introduced in [20].
Emulation triggers provide a generic mechanism for passing
control information to applications or protocols during emu-
lation run-time. Additionally, an adaptation layer interprets
the trigger values and converts them into a format that can
be used by the final recipient of the control information. In
this paper we describe the implementation and use of trig-
gers in the KauNet emulator and show how triggers can be
used for emulation in a DTN scenario. The DTN adapta-
tion layer is implemented as a custom Discovery mechanism
that reacts to received triggers by bringing the opportunistic
link associated with the trigger up or down. The considered
emulation scenario is a simplified version of the well-known
village example in which a bus acts as a data mule in order
to bring Internet services to remote villages [21, 22].

The remainder of the paper is organized as follows. In the
next section we introduce the KauNet emulator and describe
the design, implementation and use of triggers in KauNet.
In Section 3 the implementation and basic use of the DTN
adaptation layer is detailed. Section 4 exemplifies the use
of triggers and the DTN adaptation layer by examining the
emulation of a bus data mule, first with a small 3-node setup
then with a more extensive 14-node setup. Finally, Section
5 concludes the paper.

2. EMULATION TRIGGERS
This section describes the KauNet network emulator, and
the new trigger functionality that enables KauNet to emu-
late e.g. cross-layer information for evaluation of opportunis-
tic network scenarios.

2.1 KauNet Overview

Figure 1: Simple KauNet Setup.

KauNet is an extension to the well-known Dummynet emu-
lator [7]. By using high-resolution patterns, KauNet enables
deterministic and fully repeatable emulation of effects like
packet loss, bit-errors insertion, bandwidth changes, and de-
lay changes. The KauNet patterns that are used to control
the emulation are created ahead of time. The KauNet sys-
tem is very flexible with regards to the origin of emulation
patterns, which can be created from sources such as an-
alytical expressions, collected traces, or simulations. The
KauNet patterns can be used to emulate a certain effect
either in a time-driven or a data-driven mode. In the time-
driven mode, emulation effects can be applied with millisec-
ond granularity. Alternatively, in the data-driven mode ef-
fects can be applied with packet granularity.

Like Dummynet, KauNet is a FreeBSD kernel module which
is configured via the FreeBSD firewall using the ipfw com-
mand. In the FreeBSD firewall, so-called pipes can be con-
figured to carry specific flows. KauNet patterns are then
assigned to a specific pipe in order to apply the desired em-
ulation effects on the pipe’s traffic. KauNet achieves this
by stepping through the patterns as experimental traffic en-
ters the corresponding pipe (data-driven mode) or as time
goes by (time-driven mode). In the data-driven mode the
patterns are thus advanced for each packet that enters the
pipe and in time-driven mode the patterns are advanced
each millisecond. In data-driven mode the emulation effect
encountered by a packet is dependent on the position of the
packet in the data stream. Correspondingly, in time-driven
mode it depends on at which instance in time the packet
enters the pipe. If multiple effects are to be emulated at the
same time it is necessary to provide one pattern for each
type of emulation effect, i.e. packet loss, bit-errors insertion,
bandwidth change, and delay change. To simplify emula-
tion of multiple interrelated effects, several patterns can be
combined into one emulation scenario.

The patt_gen command line tool is used to create and man-
age patterns. The tool can generate patterns according to
several parameterized distributions and can also import pat-
tern descriptions from simple text files. These text files can
be generated by arbitrarily complex models, off-line simu-
lators or trace collection equipment. To complement the
patt_gen tool a GUI called pg_gui has also been developed
that allows graphical manipulation of the patterns.

A simple experimental setup, involving KauNet, is shown
in Figure 1. Consider an emulation scenario over a network
with a fixed delay, but where the bandwidth suddenly drops
at a specific instance in time. Assume we want to evalu-

ate the performance of several IP-based applications in this
scenario. The basic steps to set up the emulation for the
setup shown in Figure 1 would then be as follows. First, the
patt_gen utility is used to generate a bandwidth pattern.
To generate the bandwidth pattern the -bw switch is used
together with the -pos switch to specify that the positions
where the bandwidth changes occur will be explicitly pro-
vided. The name of the generated bandwidth pattern file is
test1.bw, and it is a time-driven pattern covering 1 minute.
Assume that the initial bandwidth is 10 Mbit/s and that
there is a sudden drop in bandwidth to 500 kbit/s after 20
seconds and that the normal bandwidth is restored after 30
seconds. The resulting patt_gen command thus becomes:

patt_gen -bw -pos test1.bw time 60000 \
1,10000,20000,500,30000,10000

The length of the pattern is given in milliseconds. The po-
sition in time of the bandwidth changes and the bandwidth
values themselves are specified as a sequence of <position>
<value> pairs. In the example above the bandwidth pat-
tern is explicitly provided on the command line. Normally,
the pattern would be provided to patt_gen as a simple text
file. This text file can for instance be generated by arbitrar-
ily complex models, off-line simulators, or trace collection
equipment. Assuming the pattern "1,10000,20000,500,

30000,10000" from the example above is put in the file
file1.txt an equivalent command would be:

patt_gen -bw -pos test1.bw time 60000 -f file1.txt

Next it is time to set up the firewall with ipfw on the KauNet
machine. The firewall is first configured to flush out any old
configurations that may be left and to add a default rule
that allows general traffic:

ipfw -f flush
ipfw -f pipe flush
ipfw add allow all from any to any

The next step is to create a firewall rule that routes the
traffic of interest, in this case IP traffic from Host A to Host
B, to a pipe where emulation effects are applied.

ipfw add 1 pipe 100 ip from 10.0.1.1 to 10.0.2.1 in

The pipe must now be configured with the emulated con-
ditions. In this example the command uses the delay key-
word to set a static delay of 10ms. The bandwidth changes
are configured by using the pattern keyword to load the
bandwidth pattern stored in the test1.bw file (which was
generated above).

ipfw pipe 100 config delay 10ms pattern test1.bw

The emulation scenario is now set up and the impact of
a sudden bandwidth change on various applications can be
evaluated. Although the specified bandwidth change pattern
is only one minute long the default KauNet behavior is to
wrap around and start using the pattern over again when
the end of the pattern is reached. The configuration above
thus results in a scenario where a sudden bandwidth drop
is experienced for 10 seconds each minute. Note that this is
not intended as a particularly useful or interesting scenario,
but merely serves to illustrate the setup of a simple KauNet
emulation. Further details on KauNet are available in [23].

2.2 Creation of Patterns
The pattern files described in the previous section are a key
element in any emulation setup. Their content largely decide
whether the emulation is realistic or not, although realism
is not the only reason to create patterns.

Patterns can be created from a wide spectrum of tools: they
can be written from scratch, or generated from an arbitrar-
ily complex set of models, or distillated from existing traffic
captures, or even distillated from the output of a general-
purpose simulator such as ns-2. In previous work, we have
investigated the coupling of KauNet with an off-line simula-
tor called SWINE (Simulator for Wireless Network Emula-
tion) [24]. The input of SWINE is a high-level experiment
description including the involved nodes, their radio equip-
ment, their mobility model, as well as the general propa-
gation conditions, the obstacles and walls. The output in-
cludes a set of KauNet bandwidth and packet loss patterns,
one per pair of nodes. The SWINE simulator engine takes
into account the mobility model of each node to compute its
successive positions, and then the propagation conditions
to compute the successive received signal strength (RSS)
samples using a combination of different radio propagation
models on different scales (e.g. path-loss exponent with log-
normal shadowing, Rice or Rayleigh fading). With the RSS
a decision is made on which transmission rate is used by
the communicating nodes, and then the effective bandwidth
and packet loss rate to apply at the IP level are computed.
The successive values of bandwidth and packet loss rate are
stored in time-driven patterns that can be applied during
the live emulation stage.

In [25] we demonstrated the use of KauNet with satellite-
specific packet loss patterns, which were produced using the
Markovian Land Mobile Satellite model. A measurement
campaign was led by CNES, the French Space Agency, to
set up parameters values for this Markovian model, which
allowed the generation of carrier-to-noise ratio (C/N) values
for various outdoor environments and land mobile speeds.
These values were then processed by a specific IT++-based

simulator that converted them to a packet loss sequence,
emulating a communication stack similar to a DVB-H stack.

When patterns are generated from arbitrarily complex mod-
els or based on previously collected traces, some degree of re-
alism can be reached. However, the level of realism reached
depends on the quality of the models and the appropriate-
ness of the parameter values, or on the relevance of the orig-
inal trace. Generally speaking, realism is not the only mo-
tivation driving the creation of patterns. Patterns can also
be set up to create test situations that rarely happen in the
real world, but under which the user wants to investigate
the reaction of the protocol or application under test. We
have used such “artificial” patterns (as opposed to “realistic”
patterns) during an evaluation of the TCP stack implemen-
tation on FreeBSD 6, which did not behave as expected when
packet losses were inserted at some specific positions in the
real traffic [26]. Such artificial patterns can serve as unit
tests for the validation of protocol implementations.

2.3 Trigger Patterns
Triggers in KauNet can be seen as a general information
passing functionality that can be used to deliver precisely
positioned control information to applications or protocols
during emulation run-time. As for other patterns, the trig-
ger patterns can be either data- or time-driven, according to
what is being emulated.

While the trigger mechanism is not tied to any particular
type of control information, it is reasonable to assume that
some types of information will be more prevalent in em-
ulation scenarios involving opportunistic networking. One
such example is upward flowing cross-layer information that
conveys information on the connectivity of a link. Triggers
allow emulation of cross-layer information in cases where
connectivity is intermittent and the link layer has the abil-
ity to inform upper layers about the presence or absence
of connectivity. This can be combined with other emula-
tion effects that emulate varying link conditions. Consider
for example a scenario with intermittent connectivity and
where the bandwidth available during periods of connectiv-
ity varies heavily. In such a case, bandwidth patterns can
be used to model the bandwidth variations that occur dur-
ing connectivity periods. This is then combined with trigger
patterns that generate the upwards flowing connectivity in-
formation that for a real link would come from the link layer.
The bandwidth and trigger patterns are synchronized with
each other to form a consistent emulation scenario.

A general view of a simple emulation setup using triggers
is shown Figure 2. In this setup two hosts are connected
using a KauNet-enabled host. The KauNet host emulates
the conditions of the particular link or network that is being
emulated by means of bandwidth change, delay change, bit-
error insertion and/or packet loss patterns, as appropriate.
These patterns control the behavior of the KauNet host only.
The trigger pattern is, just as any pattern, located at the
KauNet host. In contrast to other pattern types, however,
triggers are often relevant to other hosts than the KauNet
host. Triggers might, for instance, signal connectivity infor-
mation that should be available to a protocol or an appli-
cation at Host A. Thus, in addition to trigger patterns, a
trigger communication module and an adaptation layer are

Figure 2: KauNet Trigger Overview.

needed to convey and use trigger information accordingly.

KauNet already provides a pattern handling framework which
is reused for encoding the semantics of triggers, thus sim-
plifying the implementation. The framework provides the
means to create and load compressed pattern files composed
of position and value pairs. The values are represented as
short values (i.e. 0− 65535) that contain pattern specific in-
formation. For triggers the implication is that no more than
65536 mutually exclusive trigger values can exist. As the
trigger values that are inserted in a pattern are under the
control of the user, it is possible to generate triggers leading
to arbitrary complex behavior.

As mentioned, the KauNet pattern framework allows pat-
terns to be either time-driven or data-driven. In time-driven
mode, the emulation effect of a pattern is applied on a per
millisecond basis. Similarly, with data-driven patterns em-
ulation effects can be applied on a per packet basis. The
maximum resolution of a trigger pattern is therefore one
millisecond or one packet. The memory requirements of
patterns are dependent on the emulation length and pat-
tern entropy, i.e. how often value changes occur in the pat-
terns. For example, consider a time-driven emulation setup
with 50 individually emulated links, with 3 different pat-
terns (BW/delay/trigger) per link, and where the values for
each pattern change on average 10 times per second. For
a 30 minute emulation run, the 150 patterns would in total
encompass 10.3 Megabyte.

Trigger patterns are created in the same way as other pat-
terns. Using the patt_gen tool to create a time-driven trig-
ger pattern that covers 1 minute and inserts trigger values
1, 2, and 3 after 10, 20 and 30 seconds, respectively, would
then result in the following command:

patt_gen -trig -pos test1.trg time 60000 \
10000,1,20000,2,30000,3

As for other patterns, the trigger pattern may also be pro-
vided to patt_gen using a text file.

2.4 Trigger Communication and Interpreta-
tion

Since KauNet is implemented in the FreeBSD kernel, trig-
gers must be conveyed to external processes to be useful.
Otherwise, only kernel space processes running locally on

the KauNet host would be able to benefit from the trig-
ger functionality. Thus, a mechanism to transfer the trigger
value of a fired trigger to an arbitrary receiver is needed.
The recipient of a trigger should be able to reside in either
user space or kernel space, locally or on another host.

This functionality is implemented by the trigger communi-
cation module shown in Figure 2. This module has a number
of responsibilities. First, to enable both local and non-local
communication the module provides a UDP interface. Us-
ing this interface, adaptation layers can register themselves
to receive triggers from a certain pipe. The trigger com-
munication module keeps a list of all registered adaptation
layers to enable multiple adaptation layers to subscribe to
the same trigger. Second, whenever a trigger is fired within
KauNet the module transmits the trigger information to the
registered adaptation layers. The communication of triggers
is also done using UDP. Finally, the trigger communication
module also provides the means for adaptation layers to un-
register themselves.

To ensure that there is no possibility for trigger control traf-
fic and experimental traffic to interfere with each other, trig-
ger traffic should be separated by using a separate control
network with separate network interfaces. The low band-
width consumed by trigger control traffic ensures that the
UDP control packets are very unlikely to be lost due to
buffering or congestion in the control network. The band-
width requirements for trigger traffic can be exemplified by
the requirements of the 50-link scenario described in the pre-
vious subsection, and where triggers are used to signal band-
width changes that in a real environment would be propa-
gated by an intelligent link layer. Counting all header over-
head, the bandwidth requirements for that 50-link scenario
is only 312 kbps, i.e. less than 0.03% of the capacity of a
gigabit Ethernet control network. From a scalability view-
point, control traffic bandwidth is thus unlikely to become
a concern. Even if the trigger control traffic is scaled up to
the point where UDP losses might occur, it can be noted
that the effect of a trigger packet loss is localized both in
space and time. Thus, it will cause a missed update for one
single link and only for the time period until the subsequent
trigger is received. It is also possible to employ multiple
KauNet nodes to perform emulation and send out triggers.
Depending on the use-case this may, however, also require
the added complexity of synchronization between multiple
KauNet hosts, and such synchronization has not been tested
yet.

In addition to the UDP-based trigger communication dis-
cussed here, it is also possible to employ other methods
for trigger communication. In [27], alternatives for trigger
communication were examined with a tilt towards commu-
nication methods that allow triggers to be communicated
locally from the kernel to local user-space processes. In ad-
dition to UDP traffic, which uses AF INET sockets, exam-
ined approaches were signals with different shared memory
setups, and AF UNIX IPC sockets. While signal based ap-
proaches were found to have higher throughput than exter-
nal AF INET sockets, internal AF UNIX sockets in some
cases had worse performance than external AF INET UDP
traffic. Although slightly less efficient than signal based ap-
proached, the performance of external AF INET UDP traffic
well surpassed the expected requirements for trigger commu-
nication. As UDP-based trigger communication was consid-
ered to be the most flexible of the evaluated approaches it
was chosen for the implementation.

The interpretation of triggers is handled by different adap-
tation layers. In general, an adaptation layer is a process,
or part of a process, that is able to interface with the trig-
ger communication module and thereby receive triggers. In
the context of opportunistic networking, trigger values are
likely to represent some sort of cross-layer information. The
role of the adaptation layer is then to work as an interface
between the trigger communication module and the upper
layer consumer of cross-layer information. Applications and
protocol implementations may use cross-layer information
in different ways and the information may take different for-
mats. It is the role of the adaptation layer to reshape the
semantics-free trigger values contained in the triggers into
the specific type of cross-layer information that is used by
the application or protocol that is being evaluated. In the
next section, we describe an adaptation layer for the DTN2
reference implementation [28], which interprets the trigger
values (1 or 2) as connectivity information (link up or down)
and interfaces with the link discovery mechanism within the
DTN2 implementation.

3. A DTN ADAPTATION LAYER
This section describes how to implement and use an adap-
tation layer for DTNs where the experimentation nodes run
the Bundle Protocol [29], in this case the DTN2 reference im-
plementation [15, 28]. One of the most distinctive features of
DTNs is the intermittent connectivity between nodes. Over
time, contact opportunities arise and allow the forwarding
of data bundles towards their final destination. Those op-
portunities are mainly characterized by a time window and
the contactable peer ID (EID). Opportunities may be pre-
dictable or not, according to the considered application. In
some cases several links allow for the contact between two
peers, in which case there are several contact opportunities,
one per available link for the contact. Each node running
the DTN2 implementation has a component that manages
contact opportunities, as well as optional components pro-
viding contact discovery.

The adaptation layer implementation described here mainly
consists in using triggers to emulate contact opportunities.
It implies the development of a new Discovery mechanism
in the DTN2 reference implementation. On each DTN2
node, the new discovery mechanism is in charge of detecting

contact opportunities by connecting to the KauNet trigger
communication module and extracting contact information
from the trigger values, thus constituting the trigger adap-
tation layer. Bundle forwarding is unchanged, and carried
out over Ethernet on the experimental network according
to the announced opportunities and the local DTN2 node
configuration. Regardless if the contact opportunities are
predictable or not at higher layers, hooking into the DTN2
implementation via a custom Discovery adaptation layer al-
lows the emulation of many different flavors of DTNs; the
only difference lies in the creation of the contact triggers.
The implementation of the custom Discovery mechanism is
further described below.

3.1 Implementation
In the DTN2 reference implementation, an IP Discovery/
Announce mechanism is provided for detecting and creating
opportunistic links in IP-based networks. A convergence
layer may announce its presence by sending out beacons with
regular intervals, either as a broadcast message across the
entire network, or as a unicast for specific nodes. The IP
Discovery mechanism listens for these beacons. When an
announce packet is detected, the contained information is
extracted and a new opportunistic link is created using the
IP address, port and EID of the remote node, as well as the
type of the convergence layer that is broadcasting.

In order for KauNet to control the opening and closing
of opportunistic links in DTN2, a new KauNet Discovery/
Announce mechanism is implemented. The discovery mech-
anism is implemented as a new Discovery subclass. Similarly
to the IP Discovery mechanism, it listens for custom KauNet
triggers (that act similarly to beacons) on a specific port. It
provides functionality for the DTN2 node to register (and
unregister) itself at a KauNet host, in order to receive the
contact triggers that describe the status of a link. Note that
the KauNet triggers are received over the control network
and not over the interface whose connectivity they control.
The KauNet Discovery mechanism parses the triggers it re-
ceives and opens a link (creating it if necessary) or closes
a link, depending on the received trigger value: 1 means
“open” and 2 means “close”.

The announce mechanism is not implemented within the
DTN2 adaptation layer. Instead, it is provided by the KauNet
trigger communication module. The trigger communication
module simply stores the DTN2 clients registered for each
pipe and sends out KauNet triggers to subscribing clients
whenever a trigger event takes place in a pipe.

KauNet does not handle the link discovery information used
by DTN2 (specifically, the type of convergence layer, the IP
address used to communicate with it, and the EID of the
DTN2 node on which the convergence layer resides). The
KauNet triggers contain no link information other than the
status (i.e. open or closed). Therefore, the discovery mech-
anism requires alternative means in order to obtain the re-
quired link information. This information is instead pro-
vided in the configuration file of each DTN2 node that uses
KauNet controlled links (see Section 3.2). The configuration
file also contains the information required to send a subscrip-
tion request to the KauNet host controlling the links. Note
that an alternative implementation would have been to in-

clude the link discovery information in the KauNet triggers.
This alternative was rejected, as it was considered more con-
sistent with the DTN2 configuration to include the link in-
formation as part of the configuration for KauNet Discovery
instances at each node. The chosen solution also allows the
connectivity trigger patterns to be easily reused in different
communication scenarios.

3.2 Usage
As in the original DTN2 implementation, opportunistic links
are detected using a discovery mechanism. A node must add
one entry to its configuration file for each opportunistic link
it needs to discover. The entry contains the required link
and subscription information and has the following syntax:

discovery add <discovery_name> kaunet
kaunet_ip=<addr> [kaunet_port=<#>] pipe=<#>
cl_ip=<addr> [cl_port=<#>] cl_type=<type> eid=<eid>
[open]

The parameters of the discovery entry are detailed below.

<discovery_name>

The name of this discovery instance, used for identifi-
cation by DTN2.

kaunet_ip=<addr>

The IP address of the KauNet host that emulates the
connectivity of this link.

kaunet_port=<#>

(Optional) The port the KauNet host uses to listen
for subscription requests. If no value is specified, the
default KauNet port (1066) is used.

pipe=<#>

The ID number of the pipe KauNet uses to emulate
this link.

cl_ip=<addr>

The IP address of the convergence layer on the DTN2
node that this link represents a connection to.

cl_port=<#>

(Optional) The port of the convergence layer on the
DTN2 node this link represents a connection to. If no
value is specified, the default TCP/UDP convergence
layer port (4556) is used.

cl_type=<type>

The type of convergence layer used on the DTN2 node
this link represents a connection to.

eid=<eid>

The EID of the DTN2 node this link represents a con-
nection to.

open

(Optional) A flag indicating that the link should be
initialized as an open and available link. If this flag is
not set, the link must first be opened with a KauNet
trigger before DTN2 can use it to send data.

���� �� ��
�
�
�

����		�
��� �����

���� �� ��
�
�
�

����		�
���

�����

���
���
�
�

���� �

������ ��� �������

���� �

������ ��

��������

����

Figure 3: Emulation setup

As DTN2 is loaded, the kaunet_ip, kaunet_port and pipe

custom arguments are used to generate and send a single
subscription request to the KauNet host at initialization.
It is therefore important to load the trigger communication
module on the KauNet host before starting any DTN2 node,
or the subscription requests will fail.

An example setup is shown in Figure 3. It features a control
network (192.168.1/24) for non-experiment traffic and two
experiment networks (10.0.1/24 and 10.0.2/24). It features
two DTN2 nodes, A and B, and a node running KauNet
that is used to control the availability and properties of the
link between DTN2 nodes A and B. As DTN links may pro-
vide asymmetric data rates, two pipes are used to model
the link between node A and B. In our example, node A
runs the KauNet discovery mechanism to keep track of the
connectivity of the link between node A and node B. It re-
ceives triggers over the control network from the KauNet
machine. When a trigger is received indicating that the link
is available, node A establishes a connection to a TCP con-
vergence layer on host B. The discovery part of the DTN2
configuration file at node A has the following entry:

discovery add kaunet_disc kaunet
kaunet_ip=192.168.1.1 pipe=1
cl_ip=10.0.2.1 cl_type=tcp
eid=dtn://B.dtn

Node A registers at the KauNet host (192.168.1.1) via the
control network on the default port. It subscribes to pipe 1,
which is the pipe configured with the connectivity pattern
for the link between nodes A and B. When the discovery
instance is loaded, the subscription request will be auto-
matically sent using the information from the configuration
file. The details of the remote convergence layer are also
given by the configuration.

As the discovery is made through the KauNet triggers there
is no need to run an Announce mechanism on node B. Node
B only has to define an interface that creates a standard
TCP convergence layer. In our example the default TCP
convergence layer port is used. The corresponding interface
command in the DTN2 configuration file at node B is:

interface add tcpB tcp local_addr=10.0.2.1

When a connectivity opportunity appears and a connection
over TCP has been established, the established DTN link

Figure 4: The Village Example (from [15]).

will be available for bidirectional communication, in other
words implicitly discovered by node B. There is therefore
no need to run a discovery mechanism on node B. Note that
the same behavior is not true for the UDP convergence layer
which requires each node to discover its own uplink.

4. THE VILLAGE EXAMPLE
This section describes an emulation scenario typical of a
delay-tolerant network. It is a data mule setup where a bus
is used as a mechanical backhaul intermittently connecting
villages to the Internet. This Village example is inspired by
the DakNet [21] and KioskNet [22] projects and is illustrated
by Fig. 4. In this section, however, we simplify the archi-
tecture to keep the example tractable. Three DTN nodes
are considered: a kiosk, which is typically in an isolated vil-
lage, used by the inhabitants for intermittent access to the
Internet; a bus that periodically comes to the village; and
a gateway in the city that is permanently connected to the
Internet. When a villager sends a mail, a bundle is created
and waits at the kiosk until the bus arrives. The bundle is
then forwarded to the bus node and travels with the bus un-
til the next arrival of the bus to the gateway in the city. The
bundle is then forwarded to the gateway, which can retrieve
the mail and send it the usual way.

Under these conditions, the distribution of opportunistic
contacts over time is as follows in a periodic way: no contact,
kiosk/bus contact, no contact, gateway/bus contact, etc. In
a real setup, contacts may be several hours apart, and would
not follow a strict period. In our tests, we have scaled down
the duration of a complete bus trip to a few minutes, and
made it strictly periodic, to improve the readability of the
obtained results. However, this is not a limitation of the
KauNet tools, and much more random contacts can be im-
plemented.

4.1 Trigger and Bandwidth Patterns Used
In this setup, two types of time-driven patterns are used to
model what happens during opportunistic contacts: trigger
patterns model contact opportunities, and bandwidth pat-
terns model the bandwidth available over the link at the IP
level.

First, due to the mobility of the bus, the quality of the link
with the encountered kiosk or gateway varies during the con-
tact. The connection is made with TCP over WiFi. Several
papers [30, 31] show that the TCP goodput as well as the

 0

 5000

 10000

 15000

 20000

 25000

 0 50000 100000 150000 200000 250000 300000 350000

B
an

dw
id

th
 (

kb
ps

)

Time (millisecs)

Kiosk-bus bandwidth
Bus-gateway bandwidth

Figure 5: Bandwidth patterns.

MAC bit rate has a specific shape, which follows a three
phase model, for drive through connections. We have simpli-
fied this to a trapezoid for modeling the bandwidth of both
the kiosk/bus and the gateway/bus contacts. Fig. 5 shows
both shapes and when they take place in one full period. To
implement both shapes, we first generate bandwidth shape
values for both links with a granularity of 100 ms to files
KB.txt and BGW.txt with a simple python script. We then
generate time-driven bandwidth patterns KB.bw and BGW.bw

with the patt_gen command:

patt_gen -bw -pos KB.bw time 360000 -f KB.txt
patt_gen -bw -pos BGW.bw time 360000 -f BGW.txt

Although the period of 6 minutes used is quite unrealistic,
the duration of a contact of approximately one minute as
well as the maximum goodput of 22 Mb/s match the obser-
vations made in the above cited papers, for a bus traveling
at 80 km/h and a gateway next to the road.

Second, trigger patterns emulate contact discovery with the
mechanism described in Section 3, involving the trigger adap-
tation layer added to the DTN2 reference implementation.
One pattern is needed for each pair of opportunistically con-
nected nodes: one pattern for kiosk/bus contacts, and one
for bus/gateway contacts. The trigger pattern is a time-
driven pattern with a very simple semantic: a trigger value
of 1 means “enable contact” and a trigger value of 2 means
“disable contact”. These patterns are also defined manually
using the patt_gen command. We have considered differ-
ent sensitivities: high sensitivity means that the contact is
discovered as soon as some signal is available, i.e. at the be-
ginning of the bandwidth ramp; low sensitivity means that
the contact is discovered only when the maximum band-
width is available, i.e. when the top of the bandwidth ramp
is reached; and medium sensitivity lies in-between. Sen-
sitivities and how they relate to the bandwidth ramp are
illustrated in Fig. 6.

For instance, the high sensitivity trigger patterns for both
links are generated as follow:

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000 60000 80000 100000 120000 140000

B
an

dw
id

th
 (

kb
ps

)

Time (millisecs)

High sensitivity contact

Medium sens.

Low sens.

Bandwidth

Figure 6: Trigger patterns: three different sensitiv-
ities.

patt_gen -trig -pos KB.trg time 360000 60000,1,120000,2
patt_gen -trig -pos BGW.trg time 360000 180000,1,240000,2

Note that both trigger and bandwidth patterns can be gen-
erated based on a mobility model or on the output of a simu-
lator, thus introducing potentially more randomness and/or
realism.

The ability to couple the contact opportunity trigger pattern
with another type of pattern using KauNet’s time-driven
mode is a very convenient feature that can be used in vari-
ous other scenarios. For example, in a DTN space scenario
such as the one described in [19], contact opportunities cor-
respond to the low earth orbit satellite UK-DMC passing
above a ground-station, for a duration of 5 to 14 minutes.
During each pass, delay and throughput are constant while
the bit error rate varies a lot (high BER at the start and the
end of the pass, when the satellite elevation is low). This
can be emulated with a bit-errors insertion pattern coupled
with a high-sensitivity contact trigger pattern.

4.2 Infrastructure Deployment on KauNet
We choose to deploy the Village Example on a 4-host setup,
with one host per DTN node (kiosk, bus and gateway) plus
the KauNet host. The DTN hosts are Linux hosts (Ubuntu
9.10) with the DTN2 reference implementation as well as
the KauNet adaptation layer previously described. As il-
lustrated by Fig. 7, the kiosk (K) is mapped to host A
(10.0.1.1), the bus (B) is mapped to host B (10.0.2.1) and
the gateway (GW) is mapped to host C (10.0.1.3). The
fourth host is the KauNet box. Having the kiosk and the
GW on one subnet and the bus on another is a convenient
deployment for setting up the routing to ensure that all data
transmissions go through KauNet.

KauNet is configured with two unidirectional pipes per link.
The kiosk to bus pipe has number 1 and the reverse bus to
kiosk has number 2. The bus to gateway link has number
101, and the reverse gateway to bus pipe has number 102.
The same bandwidth pattern KB.bw is applied on both direc-
tions of the kiosk/bus link, i.e. pipes 1 and 2. The contact
trigger pattern KB.trg is loaded only on pipe 1, but once

 !"#$%
&"'()*+*+,+)

-%.(//&+-%.

012$)

-$3!45 &65 %7188$7

012$,

-$3!45 &6

%92&"'

012$)*)

-$3!45 &65 %7188$7

012$)*,

-$3!45 &6

 1:';()*+*+)+)

-%.(// +-%.

<!%$=!4()*+*+)+>

-%.(//<6+-%.

-1'9&"'

-1'9&"'

Figure 7: KauNet Setup for the Village Example.

the DTN2 TCP convergence layer discovers a contact on
the forward direction, it automatically “discovers” the con-
tact also on the reverse direction. Similarly, a bandwidth
pattern BGW.bw is shared on pipes 101 and 102, while the
contact pattern BGW.trg for bus and gateway is loaded only
on pipe 101:

ipfw add 1 pipe 1 ip from 10.0.1.1 to 10.0.2.1 in
ipfw add 2 pipe 2 ip from 10.0.2.1 to 10.0.1.1 in
ipfw add 101 pipe 101 ip from 10.0.2.1 to 10.0.1.3 in
ipfw add 102 pipe 102 ip from 10.0.1.3 to 10.0.2.1 in
ipfw pipe 1 config delay 1ms \

pattern KB.bw pattern KB.trg
ipfw pipe 2 config delay 1ms pattern KB.bw
ipfw pipe 101 config delay 1ms \

pattern BGW.bw pattern BGW.trg
ipfw pipe 102 config delay 1ms pattern BGW.bw

4.3 DTN2 Configuration
For each of the mapped entities (K, GW, and B), a TCP con-
vergence layer or a KauNet discovery mechanism is added
to the DTN2 configuration of its host. The bus has a sim-
ple convergence layer statement, while the kiosk and gate-
way have discovery statements that refer to B’s convergence
layer. Below is the DTN2 configuration of the bus:

Bus config in B.dtn
route local_eid "dtn://B.dtn"
interface add tcpBus tcp local_addr=10.0.2.1

The DTN2 configuration of the kiosk, shown below, has a
discovery statement referring to the interface declared in the
bus configuration above. It also refers to the KauNet host
and to pipe 1, on which the kiosk/bus contact trigger pattern
KB.trg was loaded:

Kiosk config in K.dtn
route local_eid "dtn://K.dtn"
discovery add discBus kaunet

kaunet_ip=192.168.1.1 pipe=1
cl_ip=10.0.2.1 cl_type=tcp
eid=dtn://B.dtn

Below is the configuration of the gateway. Also this dis-
covery statement refers to the interface declared in the bus

 0

 200

 400

 600

 800

 1000

 1200

 0 6 12 18 24 30 36 42 48 54 60

D
el

iv
er

ed
 p

ac
ke

ts

Time (min)

dtnsend/recv performance

Low sensitivity
Medium sensitivity

High sensitivity

Figure 8: Bundle delivery over time.

Sensitivity Average 95% c.i.

High 110.3 1.0
Medium 95.3 2.4
Low 66.5 1.8

Table 1: Bundles delivered per round.

configuration above, as well as to pipe 101, on which the
bus/gateway contact trigger pattern BGW.trg was loaded:

Gateway config in GW.dtn
route local_eid "dtn://GW.dtn"
discovery add discBus kaunet

kaunet_ip=192.168.1.1 pipe=101
cl_ip=10.0.2.1 cl_type=tcp
eid=dtn://B.dtn

4.4 Applications Deployment
Now that the infrastructure is deployed and the through-
put and contact patterns have been defined, the platform is
ready for application-level testing. Among all possible tests,
we report on a simple data delivery test, evaluating how the
sensitivity of the contact patterns impacts bundle delivery.

The applications used are the dtnsend and dtnrecv com-
mands packaged with the DTN2 reference implementation.
The sender is hosted by the kiosk (K) and the receiver is
hosted by the gateway (GW). The sender application sends
5000 bundles of 1MByte, which are then slowly forwarded
to the bus, the gateway and finally the receiver application
as contact opportunities arise. We measure how many bun-
dles are delivered to the gateway for every bus round-trip,
over 30 rounds. Fig. 8 shows the evolution of the amount
of delivered bundles during the 10 first bus rounds for high,
medium and low sensitivities. Over 30 bus rounds, we obtain
the results in Table 1.

The steps observed in Fig. 8 closely match the no-contact
periods between the bus and the gateway, i.e. the receiver.
One can also see that the first bundles are delivered at the
receiver application after 3 minutes, i.e. at the beginning of
the first bus/gateway contact and one minute after the end
of the first kiosk/bus contact. Another observation that can

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 180 185 190 195 200 205 210 215 220 225 230

D
el

iv
er

ed
 p

ac
ke

ts

Time (seconds)

dtnsend/recv performance

Low sensitivity
Medium sensitivity

High sensitivity

Figure 9: Bundle delivery over time (magnified).

be made is that the proportion of contact time lengths is
not matched by the proportion of packet delivery steps: al-
though a high-sensitivity contact lasts twice as long as a low-
sensitivity one, there are not twice as many bundles deliv-
ered. This is due to the effect of the bandwidth ramp shown
in Fig. 6: the extra time of the high-sensitivity contact cor-
responds to the beginning and ending ramps where less data
can be forwarded. Finally, in Fig. 9 a magnified view of the
first step shows that for the medium-sensitivity case bundle
delivery occurs a few seconds after the high-sensitivity curve,
and a few seconds later for the low-sensitivity case. These
times are related to the 7.5-second offsets in the sensitivity
timings of Fig. 6. The exponential shape of the beginning
of the high-sensitivity packet-delivery curve is due to the in-
crease of the bandwidth over time, which leads to a decrease
of delivery delays for the bundles. This shape can also be ob-
served to a smaller extent in the medium-sensitivity curve.
It is not present in the low-sensitivity case because in that
case the bandwidth is constant during the whole contact
time.

4.5 Multiple Kiosk Scenario
The emulated example described above is limited to three
DTN nodes to keep the description simple. The emulation
capabilities of KauNet in general and of the trigger mech-
anism in particular, is however easily scalable to scenarios
involving a larger number of nodes. As a single KauNet
node can emulate multiple links, the emulated scenario can
be scaled up with more DTN nodes by adding pipes to the
KauNet configuration. The number of links (i.e. pipes) that
can be supported is mainly dependent on the amount of si-
multaneous traffic generated over the emulated links and on
the capacity of the experimental network.

To verify the trigger mechanism in a slightly larger setup
we have extended the basic village scenario, discussed previ-
ously, to a scenario where the bus passes through 12 different
villages (with one kiosk in each village) during a round-trip.
The bandwidth patterns used for the multiple kiosk scenario
are illustrated in Fig. 10, showing one complete bus round-
trip. As in our previous example we use a fully periodic
schedule and have compressed the contact opportunities in
time. As seen in the Figure, the bus makes contact with

 0

 5000

 10000

 15000

 20000

 25000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

B
an

dw
id

th
 (

kb
ps

)

Time (min)

K1 - Bus
K2 - Bus
K3 - Bus
K4 - Bus
K5 - Bus
K6 - Bus
K7 - Bus
K8 - Bus
K9 - Bus

K10 - Bus
K11 - Bus
K12 - Bus
Bus - GW

Figure 10: Bandwidth patterns for multiple kiosk
scenario.

?@ABCD

EDFGHHIJEDF

DKLIAM

EDFGHH?NJEDF

EOMKIAM

POLC N

ECQ@RS ITS DUOVVCU

POLC W

ECQ@RS IT

EDFGHH?NWJEDF

EOMKIAM

POLC WX

ECQ@RS ITS DUOVVCU

POLC WY

ECQ@RS IT

EDFGHHZTJEDF

EOMKIAM

POLC W[

ECQ@RS ITS DUOVVCU

POLC W\

ECQ@RS IT

]^_`ab cdef

Figure 11: KauNet Setup for the Multiple Kiosk
Example.

one of the kiosks or with the gateway every other minute,
which allows one round-trip to be completed in 26 minutes.
As before, each contact lasts for one minute and follows a
three-phase trapezoidal model.

The extended scenario involves a total of 14 DTN nodes.
To limit the number of physical machines required, in this
setup we deploy the kiosk nodes and the GW node using vir-
tualization. One of our experimental machines runs VMware
ESXi [32] and we deploy 13 virtual machines on the VMware
host. One DTN node is run in each virtual machine. Note
that the scalability and deployment of the DTN nodes is a
separate issue from the scalability of the KauNet emulation
itself.

The setup of the multiple kiosk scenario is illustrated in
Fig. 11. As before, two pipes are used to emulate each DTN
link resulting in a total of 26 pipes. The configuration of
the scenario is done in the same way as for the 4-node case
detailed earlier. A bandwidth pattern and trigger pattern

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 60 120 180 240 300 360 420 480

D
el

iv
er

ed
 p

ac
ke

ts

Time (min)

dtnsend/recv performance

1 kiosk sending
4 kiosks sending
8 kiosks sending

12 kiosks sending

Figure 12: Bundle delivery of Kiosk 1 over time.

is created for each link. As described in Section 4.2, the
bandwidth pattern is applied in both directions of a link
whereas the trigger pattern only needs to be loaded for one
direction. The trigger patterns are based on the medium
sensitivity pattern explained in Section 4.2. The configura-
tion of the DTN nodes follows the configuration described
in Section 4.3. Each kiosk node and the GW node have
a KauNet discovery mechanism configured. The only dif-
ference between the discovery statements of these nodes is
that they register to different KauNet pipes to receive the
correct connectivity information for their respective link to
the bus. The configuration for the bus node is unchanged.

For the multiple kiosk scenario we choose to evaluate the
impact on bundle delivery performance of the number of
kiosks that need to communicate via the gateway. As be-
fore, dtnsend and dtnrecv are used for the communication,
with senders hosted at the kiosks and the receiver hosted
at the gateway. When active, the sender application at a
kiosk sends 1000 bundles of 1MByte. We evaluate the bun-
dle delivery performance of Kiosk 1 with varying number
of sending kiosks. Four configurations are compared: only
Kiosk 1 is sending, 4 kiosks (Kiosks 1, 4, 7, and 10) are send-
ing, 8 kiosks (Kiosks 1, 3, 4, 6, 7, 9, 10, and 12) are sending,
and all 12 kiosks are sending. Fig. 12 shows the evolution
of the amount of delivered bundles from Kiosk 1 during the
20 first bus rounds.

The impact of the number of sending kiosks is clearly dis-
played in Fig. 12. When Kiosk 1 is the only kiosk with bun-
dles to send, a regular number of bundles is delivered each
round. Less than 20 rounds are needed to deliver all the 1000
bundles. When multiple kiosks have bundles to send, on the
other hand, bundles from Kiosk 1 are only delivered to the
gateway in some of the rounds, and only a fraction of the
1000 Kiosk 1 bundles are delivered during the first 20 rounds.
The link between the bus and the gateway is shared by all
kiosks on their paths from sender to receiver and becomes a
bottleneck. It can be seen that the DTN2 reference imple-
mentation of the bundle layer uses FIFO queuing. Kiosk 1 is
the first kiosk passed by the bus during a bus round, and the
Kiosk 1 bundles picked up during the first round are the first
to be delivered to the gateway. The Kiosk 1 bundles picked

up during the second round are queued behind bundles from
other kiosks picked up during the first round. They can not
be delivered until all bundles from the first round have been
delivered. As can be seen in the figure, the queuing delay
encountered by the Kiosk 1 bundles is directly dependent
on the number of kiosks competing for the bottleneck link.
The exact number of bundles delivered from a kiosk to the
bus or from the bus to the gateway varies slightly between
contacts. As a consequence, the Kiosk 1 bundles received
by the bus in a given round are typically delivered to the
gateway during more than one round once they reach the
head of the queue.

The multiple kiosk scenario aim to illustrate the use of KauNet
triggers in a slightly larger setup where several DTN senders
interact. It also illustrates the importance of the placement
of the gateway. In our example, bundle delivery delay in-
creases roughly proportionally with the number of sending
kiosks. A simple solution to reduce the delay in bundle de-
livery would of course be to allow the bus and gateway a
longer contact time, thus reducing the impact of the bot-
tleneck link. Depending on the scenario, it may also be
interesting to consider different queuing disciplines at the
bundle layer.

5. CONCLUSIONS
By extending the pattern-based KauNet emulation system
with pattern-driven triggers it is possible to emulate oppor-
tunistic communication scenarios that depend on cross-layer
information. The triggers can be tightly controlled and accu-
rately synchronized with other emulation effects. The trig-
gers are distributed to local and remote processes by the trig-
ger communication module, where the adaptation layer is re-
sponsible for translating the triggers into application-specific
semantics and actions. An adaptation layer for DTNs was
described and its use in emulating a simple DTN scenario
was detailed. The DTN examples serve to highlight the func-
tionality and applicability of the trigger mechanism. Ad-
equate emulation support allows effective debugging, ac-
curate and reproducible performance evaluations and user
studies of protocols and applications. It is our hope that
the proposed triggers will allow researchers in opportunistic
networks to perform all these tasks in a more cost and time
efficient way, and thereby contribute to the further advance-
ment of the field.

Possible future work includes emulating a realistic end-to-
end space scenario where data must be collected in remote
field areas through a Low Earth Orbit satellite. Such a
scenario would interconnect mixed technologies: outdoors
wireless sensor network, an Earth-satellite link and the In-
ternet, also including specific protocols like Saratoga or LTP
as convergence layers. Emulation would be used to generate
Earth/satellite contacts, including bit-error rate evolution
during a contact. The purpose of the setup would be to
assess different infrastructure deployments with respect to
maximum delivery time.

The emulation setups presented in this paper are well suited
for experiments involving a few dozens physically intercon-
nected DTN nodes. However, emulating opportunistic net-
works involving hundreds of nodes is not possible. For future
work, we intend to explore to what extent a majority of such

emulated nodes can be abstracted away, leaving a physical
emulation setup involving only a few end nodes. We are cur-
rently investigating approaches to abstracting down a DTN
network to only a few nodes while retaining the character-
istic behavior.

6. ACKNOWLEDGMENTS
The authors wish to thank Andreas Midestad for his work
on the implementation of triggers. This work was partly
supported by the European Commission in the framework of
the FP7 Network of Excellence in Wireless COMmunications
NEWCOM++ (contract n. 216715).

7. REFERENCES
[1] Kevin Fall. A delay-tolerant network architecture for

challenged internets. In Proc. of the 2003 conference
on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM
’03), pages 27–34, August 2003.

[2] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson,
R. Durst, K. Scott, K. Fall, and H. Weiss.
Delay-Tolerant Networking Architecture. RFC 4838
(Informational), April 2007.

[3] L. Lilien, Z. H. Kamal, and A. Gupta. Opportunistic
networks for emergency applications and their
standard implementation framework. In Proc. of the
17th International Conference on Database and Expert
Systems Applications (DEXA ’06), September 2006.

[4] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu,
K. Ramachandran, H. Kremo, R. Siracusa, H. Liu,
and M. Singh. Overview of the ORBIT Radio Grid
Testbed for Evaluation of Next-Generation Wireless
Network Protocols. In Proc. of the IEEE Wireless
Communications and Networking Conference (WCNC
2005), pages 1664–1669, New Orleans, LA, USA,
March 2005.

[5] J. Flynn, H. Tewari, and D. O’Mahony. JEmu: A Real
Time Emulation System for Mobile Ad Hoc Networks.
In Proc. of the First Joint IEI/IEE Symposium on
Telecommunications Systems Research, Dublin,
Ireland, November 2001.

[6] P. Zheng and L.M. Ni. EMWin: Emulating a Mobile
Wireless Network using a Wired Network. In Proc. of
the 5th ACM international workshop on Wireless
mobile multimedia (WoWMoM 2002), pages 64–71,
Atlanta, GA, USA, September 2002. ACM.

[7] L. Rizzo. Dummynet: a simple approach to the
evaluation of network protocols. ACM SIGCOMM
Computer Communication Review, 27(1):31–41,
January 1997.

[8] S. Hemminger. Network Emulation with NetEm. In
Proc. of the Linux Australia Conference (linux.conf.au
2005), Canberra, Autralia, April 2005.

[9] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya
Mahadevan, Dejan Kostić, Jeff Chase, and David
Becker. Scalability and accuracy in a large-scale
network emulator. ACM SIGOPS Operating Systems
Review, 36(SI):271–284, 2002.

[10] M. Carson and D. Santay. NIST Net: A Linux-based
Network Emulation Tool. ACM Computer
Communication Review, 33(3):111–126, 2003.

[11] Brian White, Jay Lepreau, Leigh Stoller, Robert

Ricci, Shashi Guruprasad, Mac Newbold, Mike Hibler,
Chad Barb, and Abhijeet Joglekar. An Integrated
Experimental Environment for Distributed Systems
and Networks. In Proceedings of 5th Symposium on
Operating Systems Design and Implementation
(OSDI’02), pages 255–270, Boston, MA, USA,
December 2002. ACM Press.

[12] B.D. Noble, M. Satyanarayanan, G.T. Nguyen, and
R.H. Katz. Trace-Based Mobile Network Emulation.
ACM SIGCOMM Computer Communication Review,
27(4):51–61, September 1997.

[13] S. Y. Wang and Y. B. Lin. NCTUns Network
Simulation and Emulation for Wireless Resource
Management. Wireless Communications and Mobile
Computing, 5(8):899–916, December 2005.

[14] George Xylomenos and Blerim Cici. Design and
Evaluation of a Socket Emulator for Publish/Subscribe
Networks. In Proc. of the Future Internet Symposium
2010, Berlin, Germany, September 2010.

[15] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and
R. Patra. Implementing Delay Tolerant Networking.
Technical Report IRB-TR-04-020, Intel Research,
December 2004.

[16] Brian White, Jay Lepreau, Leigh Stoller, Robert
Ricci, Shashi Guruprasad, Mac Newbold, Mike Hibler,
Chad Barb, and Abhijeet Joglekar. An Integrated
Experimental Environment for Distributed Systems
and Networks. In Proc. of the Fifth Symposium on
Operating Systems Design and Implementation
(OSDI’02), Boston, MA, USA, December 2002.

[17] NASA Glenn Research Center. Channel Emulator
Resources. Available at:
http://channel-emulator.grc.nasa.gov/.

[18] R. Slywczak. Development of Network-based
Communications Architectures for Future NASA
Missions. In Proc. of the Interservice/Industry
Training, Simulation, and Education Conference
(I/ITSEC) 2007, Orange, FL, USA, November 2007.

[19] Will Ivancic, Wes Eddy, Dave Stewart, Lloyd Wood,
James Northam, and Chris Jackson. Experience with
delay-tolerant networking from orbit. In Proc. of the
4th Advanced Satellite Mobile Systems Conference
(ASMS 2008), pages 173–178, Bologna, Italy, August
2008.

[20] Per Hurtig, Tanguy Pérennou, Johan Garcia, and
Anna Brunstrom. Using triggers for emulation of
opportunistic networking. In Proc. of the Second
International Workshop on Mobile Opportunistic
Networking (MobiOpp ’10), pages 155–158, Pisa, Italy,
February 2010.

[21] Alex (Sandy) Pentland, Richard Fletcher, and Amir
Hasson. DakNet: Rethinking Connectivity in
Developing Nations. Computer, 37(1):78–83, January
2004.

[22] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and
S. Keshav. Low-cost communication for rural internet
kiosks using mechanical backhaul. In Proc. of the 12th
annual international conference on Mobile computing
and networking (MobiCom ’06), pages 334–345, Los
Angeles, CA, USA, September 2006.

[23] J. Garcia, E. Conchon, T. Pérennou, and
A. Brunstrom. KauNet: improving reproducibility for

wireless and mobile research. In Proc. of the 1st
International Workshop on System Evaluation for
Mobile Platforms (MobiEval ’07), pages 21–26, San
Juan, Puerto Rico, June 2007.

[24] Emmanuel Conchon, Tanguy Pérennou, Johan Garcia,
and Michel Diaz. W-NINE: A Two-Stage Emulation
Platform for Mobile and Wireless Systems. EURASIP
Journal on Wireless Communications and Networking,
2010. Article ID 149075. 20 pages.

[25] Tanguy Pérennou, Amine Bouabdallah, Anna
Brunstrom, Johan Garcia, and Per Hurtig. IP-Level
Satellite Link Emulation with KauNet. In Proceedings
of the 2009 International Workshop on Satellite and
Space Communications (IWSSC 2009), pages 349–353,
Siena, Italy, September 2009.

[26] Per Hurtig, Johan Garcia, and Anna Brunstrom. Loss
recovery in short TCP/SCTP flows. Karlstad
University Studies 2006:71, Karlstad University,
December 2006.

[27] Tomas Hall and Andreas Midestad. Kaunet triggers.
Master’s thesis, Karlstad University, Faculty of
Economic Sciences, Communication and IT, 2010.

[28] Delay Tolerant Networking Research Group. DTN
Reference Implementation. Available at:
http://dtnrg.org/wiki/Code.

[29] K. Scott and S. Burleigh. Bundle protocol
specification. RFC 5050, Internet Engineering Task
Force, November 2007.

[30] David Hadaller, Srinivasan Keshav, Tim Brecht, and
Shubham Agarwal. Vehicular opportunistic
communication under the microscope. In Proc. of the
1st International Workshop on System Evaluation for
Mobile Platforms (MobiEval ’07), pages 206–219, San
Juan, Puerto Rico, June 2007.

[31] J. Ott and D. Kutscher. A disconnection-tolerant
transport for drive-thru internet environments. In
Proc. of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM
2005), volume 3, pages 1849–1862 vol. 3, 2005.

[32] VMware Inc. VMware ESXi Product Information.
Available at:
http://www.vmware.com/products/esxi/.

	To link to this article: DOI: 10.1155/2011/347107
	URL: http://dx.doi.org/10.1155/2011/347107

