37 research outputs found

    Regulation of Bestrophins by Ca2+: A Theoretical and Experimental Study

    Get PDF
    Bestrophins are a recently discovered family of Cl− channels, for which no structural information is available. Some family members are activated by increased intracellular Ca2+ concentration. Bestrophins feature a well conserved Asp-rich tract in their COOH terminus (Asp-rich domain), which is homologous to Ca2+-binding motifs in human thrombospondins and in human big-conductance Ca2+- and voltage-gated K+ channels (BKCa). Consequently, the Asp-rich domain is also a candidate for Ca2+ binding in bestrophins. Based on these considerations, we constructed homology models of human bestrophin-1 (Best1) Asp-rich domain using human thrombospondin-1 X-ray structure as a template. Molecular dynamics simulations were used to identify Asp and Glu residues binding Ca2+ and to predict the effects of their mutations to alanine. We then proceeded to test selected mutations in the Asp-rich domain of the highly homologous mouse bestrophin-2. The mutants expressed in HEK-293 cells were investigated by electrophysiological experiments using the whole-cell voltage-clamp technique. Based on our molecular modeling results, we predicted that Asp-rich domain has two defined binding sites and that D301A and D304A mutations may impact the binding of the metal ions. The experiments confirmed that these mutations do actually affect the function of the protein causing a large decrease in the Ca2+-activated Cl− current, fully consistent with our predictions. In addition, other studied mutations (E306A, D312A) did not decrease Ca2+-activated Cl− current in agreement with modeling results

    Regulation of Bestrophins by Ca2+: A Theoretical and Experimental Study

    Get PDF
    Bestrophins are a recently discovered family of Cl− channels, for which no structural information is available. Some family members are activated by increased intracellular Ca2+ concentration. Bestrophins feature a well conserved Asp-rich tract in their COOH terminus (Asp-rich domain), which is homologous to Ca2+-binding motifs in human thrombospondins and in human big-conductance Ca2+- and voltage-gated K+ channels (BKCa). Consequently, the Asp-rich domain is also a candidate for Ca2+ binding in bestrophins. Based on these considerations, we constructed homology models of human bestrophin-1 (Best1) Asp-rich domain using human thrombospondin-1 X-ray structure as a template. Molecular dynamics simulations were used to identify Asp and Glu residues binding Ca2+ and to predict the effects of their mutations to alanine. We then proceeded to test selected mutations in the Asp-rich domain of the highly homologous mouse bestrophin-2. The mutants expressed in HEK-293 cells were investigated by electrophysiological experiments using the whole-cell voltage-clamp technique. Based on our molecular modeling results, we predicted that Asp-rich domain has two defined binding sites and that D301A and D304A mutations may impact the binding of the metal ions. The experiments confirmed that these mutations do actually affect the function of the protein causing a large decrease in the Ca2+-activated Cl− current, fully consistent with our predictions. In addition, other studied mutations (E306A, D312A) did not decrease Ca2+-activated Cl− current in agreement with modeling results

    Mechanisms of noncovalent β subunit regulation of NaV channel gating

    Get PDF
    Voltage-gated Na(+) (NaV) channels comprise a macromolecular complex whose components tailor channel function. Key components are the non-covalently bound β1 and β3 subunits that regulate channel gating, expression, and pharmacology. Here, we probe the molecular basis of this regulation by applying voltage clamp fluorometry to measure how the β subunits affect the conformational dynamics of the cardiac NaV channel (NaV1.5) voltage-sensing domains (VSDs). The pore-forming NaV1.5 α subunit contains four domains (DI-DIV), each with a VSD. Our results show that β1 regulates NaV1.5 by modulating the DIV-VSD, whereas β3 alters channel kinetics mainly through DIII-VSD interaction. Introduction of a quenching tryptophan into the extracellular region of the β3 transmembrane segment inverted the DIII-VSD fluorescence. Additionally, a fluorophore tethered to β3 at the same position produced voltage-dependent fluorescence dynamics strongly resembling those of the DIII-VSD. Together, these results provide compelling evidence that β3 binds proximally to the DIII-VSD. Molecular-level differences in β1 and β3 interaction with the α subunit lead to distinct activation and inactivation recovery kinetics, significantly affecting NaV channel regulation of cell excitability

    An Exploration of Charge Compensating Ion Channels across the Phagocytic Vacuole of Neutrophils

    Get PDF
    Neutrophils phagocytosing bacteria and fungi exhibit a burst of non-mitochondrial respiration that is required to kill and digest the engulfed microbes. This respiration is accomplished by the movement of electrons across the wall of the phagocytic vacuole by the neutrophil NADPH oxidase, NOX2. In this study, we have attempted to identify the non-proton ion channels or transporters involved in charge compensation by examining the effect of inhibitors on vacuolar pH and cross-sectional area, and on oxygen consumption. The chloride channel inhibitors 4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid (DCPIB) and flufenamic acid (FFA) were the most effective inhibitors of alkalinisation in human neutrophil vacuoles, suggesting an efflux of chloride from the vacuole. The proton channel inhibitor, zinc (Zn2+), combined with DCPIB caused more vacuolar swelling than either compound alone, suggesting the conductance of osmotically active cations into the vacuole. Support for cation influx was provided by the broad-spectrum cation transport inhibitors anandamide and quinidine which inhibited vacuolar alkalinisation and swelling when applied with zinc. Oxygen consumption was generally unaffected by these anion or cation inhibitors alone, but when combined with Zn2+ it was dramatically reduced, suggesting that multiple channels in combination can compensate the charge. In an attempt to identify specific channels, we tested neutrophils from knock-out mouse models including CLIC1, ClC3, ClC4, ClC7, KCC3, KCNQ1, KCNE3, KCNJ15, TRPC1/3/5/6, TRPA1/TRPV1, TRPM2, and TRPV2, and double knockouts of CLIC1, ClC3, KCC3, TRPM2, and KCNQ1 with HVCN1, and humans with channelopathies involving BEST1, ClC7, CFTR, and MCOLN1. No gross abnormalities in vacuolar pH or area were found in any of these cells suggesting that we had not tested the correct channel, or that there is redundancy in the system. The respiratory burst was suppressed in the KCC3-/- and enhanced in the CLIC1-/- cells, but was normal in all others, including ClC3-/-. These results suggest charge compensation by a chloride conductance out of the vacuole and by cation/s into it. The identity of these channels remains to be established

    Loss of TMEM16A Causes a Defect in Epithelial Ca2+-dependent Chloride Transport*

    No full text
    Molecular identification of the Ca2+-dependent chloride channel TMEM16A (ANO1) provided a fundamental step in understanding Ca2+-dependent Cl− secretion in epithelia. TMEM16A is an intrinsic constituent of Ca2+-dependent Cl− channels in cultured epithelia and may control salivary output, but its physiological role in native epithelial tissues remains largely obscure. Here, we demonstrate that Cl− secretion in native epithelia activated by Ca2+-dependent agonists is missing in mice lacking expression of TMEM16A. Ca2+-dependent Cl− transport was missing or largely reduced in isolated tracheal and colonic epithelia, as well as hepatocytes and acinar cells from pancreatic and submandibular glands of TMEM16A−/− animals. Measurement of particle transport on the surface of tracheas ex vivo indicated largely reduced mucociliary clearance in TMEM16A−/− mice. These results clearly demonstrate the broad physiological role of TMEM16A−/− for Ca2+-dependent Cl− secretion and provide the basis for novel treatments in cystic fibrosis, infectious diarrhea, and Sjöegren syndrome

    Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels

    No full text
    KCNQ1 (Kv7.1) is a unique member of the superfamily of voltage-gated K(+) channels in that it displays a remarkable range of gating behaviors tuned by coassembly with different β subunits of the KCNE family of proteins. To better understand the basis for the biophysical diversity of KCNQ1 channels, we here investigate the basis of KCNQ1 gating in the absence of β subunits using voltage-clamp fluorometry (VCF). In our previous study, we found the kinetics and voltage dependence of voltage-sensor movements are very similar to those of the channel gate, as if multiple voltage-sensor movements are not required to precede gate opening. Here, we have tested two different hypotheses to explain KCNQ1 gating: (i) KCNQ1 voltage sensors undergo a single concerted movement that leads to channel opening, or (ii) individual voltage-sensor movements lead to channel opening before all voltage sensors have moved. Here, we find that KCNQ1 voltage sensors move relatively independently, but that the channel can conduct before all voltage sensors have activated. We explore a KCNQ1 point mutation that causes some channels to transition to the open state even in the absence of voltage-sensor movement. To interpret these results, we adopt an allosteric gating scheme wherein KCNQ1 is able to transition to the open state after zero to four voltage-sensor movements. This model allows for widely varying gating behavior, depending on the relative strength of the opening transition, and suggests how KCNQ1 could be controlled by coassembly with different KCNE family members

    Transmembrane Protein 16A (TMEM16A) Is a Ca2+-regulated Cl– Secretory Channel in Mouse Airways*

    Get PDF
    For almost two decades, it has been postulated that calcium-activated Cl– channels (CaCCs) play a role in airway epithelial Cl– secretion, but until recently, the molecular identity of the airway CaCC(s) was unknown. Recent studies have unequivocally identified TMEM16A as a glandular epithelial CaCC. We have studied the airway bioelectrics of neonatal mice homozygous for a null allele of Tmem16a (Tmem16a–/–) to investigate the role of this channel in Cl– secretion in airway surface epithelium. When compared with wild-type tracheas, the Tmem16a–/– tracheas exhibited a >60% reduction in purinoceptor (UTP)-regulated CaCC activity. Other members of the Tmem16 gene family, including Tmem16f and Tmem16k, were also detected by reverse transcription-PCR in neonatal tracheal epithelium, suggesting that other family members could be considered as contributing to the small residual UTP response. TMEM16A, however, appeared to contribute little to unstimulated Cl– secretion, whereas studies with cystic fibrosis transmembrane conductance regulator (CFTR)-deficient mice and wild-type littermates revealed that unstimulated Cl– secretion reflected ∼50% CFTR activity and ∼50% non-Tmem16a activity. Interestingly, the tracheas of both the Tmem16a–/– and the CFTR–/– mice exhibited similar congenital cartilaginous defects that may reflect a common Cl– secretory defect mediated by the molecularly distinct Cl– channels. Importantly, the residual CaCC activity in Tmem16a–/– mice appeared inadequate for normal airway hydration because Tmem16a–/– tracheas exhibited significant, neonatal, lumenal mucus accumulation. Our data suggest that TMEM16A CaCC-mediated Cl– secretion appears to be necessary for normal airway surface liquid homeostasis
    corecore