130 research outputs found

    Usefulness of the ZIM-probe technology for detecting water stress in clementine and persimmon trees

    Full text link
    Further improvement on irrigation management requires continuous plant water status monitoring. The non-invasive ZIM-probe measures the pressure (Pp) transfer function through a patch of an intact leaf, which is inversely correlated with the turgor pressure. Data are sent wireless in real-Time by telemetry to an internet server via a mobile phone network where it is available to be analyzed. In this work, the detection of water stress by measuring relative changes in turgor pressure with the ZIM-probe was evaluated in clementine and persimmon trees. Ten trees of both species were equipped with two ZIM-probes each located at the east side of the canopy. The ZIM-probes were used over several months during which half of the trees were subjected to two drought cycles. Concomitant measurements of stem water potential (ψs) were taken at midday in both orchards during the drought periods. Additionally, determinations of ψs and stomatal conductance (gs) were also performed during 1-2 days at hourly intervals in the clementine and persimmon orchards, respectively, to study the existing relationship of these classical indicators with the leaf turgor pressure. Results showed that diurnal Pp values increased in non-irrigated clementine trees when water restrictions were imposed. Persimmon drought-stressed trees, on the other hand, showed different Pp curve shapes (half and complete inverse curve) depending on the level of stress reached by the trees. There was a tight correlation between the hourly spot measurements of ψs and gs with the probe data. Overall, results show that the ZIM-probe enables the detection of drought stress in clementine and persimmon trees. Nevertheless, different approaches for calculating the water stress level must be used in each of these species due to the higher tendency of persimmon leaves to the inversed Pp curve phenomena

    Transfer of manualized Short Term Psychodynamic Psychotherapy (STPP) for social phobia into clinical practice: study protocol for a cluster-randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Psychodynamic psychotherapy is frequently applied in the treatment of social phobia. Nevertheless, there has been a lack of studies on the transfer of manualized treatments to routine psychodynamic practice. Our study is the first one to examine the effects of additional training in a manualized Short Term Psychodynamic Psychotherapy (STPP) procedure on outcome in routine psychotherapy for social phobia. This study is an extension to a large multi-site RCT (N = 512) comparing the efficacy of STPP to Cognitive-Behavioral Therapy (CBT) of Social Phobia.</p> <p>Methods/Design</p> <p>The manualized treatment is designed for a time limited approach with 25 individual sessions of STPP over 6 months. Private practitioners will be randomized to training in manualized STPP vs. treatment as usual without a specific training (control condition). We plan to enrol a total of 105 patients (84 completers). Assessments will be conducted before treatment starts, after 8 and 15 weeks, after 25 treatment sessions, at the end of treatment, 6 months and 12 months after termination of treatment. The primary outcome measure is the Liebowitz Social Anxiety Scale. Remission from social phobia is defined scoring with 30 or less points on this scale.</p> <p>Discussion</p> <p>We will investigate how the treatment can be transferred from a controlled trial into the less structured setting of routine clinical care. This question represents Phase IV of psychotherapy research. It combines the benefits of randomized controlled and naturalistic research. The study is genuinely designed to promote faster and more widespread dissemination of effective interventions. It will answer the questions whether manualized STPP can be implemented into routine outpatient care, whether the new methods improve treatment courses and outcomes and whether treatment effects reached in routine psychotherapeutic treatments are comparable to those of the controlled, strictly manualized treatment of the main study.</p> <p>Trial Registration</p> <p>German Clinical Trials Register (DRKS) DRKS00000570</p

    Sensory marketing for the organic market : key insights from the EU funded project ECROPOLIS

    Get PDF
    none13The organic food sector in Europe is growing since several years. However the development of the organic food market varies across European countries. High developed markets (e.g. Germany and Switzerland) coexist with markets in the introduction stage (e.g. Poland). Sensory marketing strategies are not well implemented in the organic sector although this market segment is built on consumers with clear preferences for differentiated sensory properties. Sensory attributes are an important element of organic marketing and a possible tool to create a unique value proposition. The EC funded project Ecropolis investigated the organic market in six European countries (Germany, Poland, The Netherlands, Italy, France and Switzerland). Based on its results the OSIS database was developed and made available on the website. The main results of Ecropolis are summarized for different target groups on different levels: On level 1 a short summary addressed to consumers, retailers and SMEs in English, German, Italian, French, Dutch and Polish is available for different product groups. A concise overview about specific sensory characteristics for the chosen product groups in the six countries is provided, together with information about consumer habits and sensory marketing for those product groups. OSIS offers a sensory journey through the participating countries to learn about country specific preferences. On level 2 more specific guidance for the practical implementation of sensory marketing and sensory analyses in the companies is worked out in form of fact sheets addressed to retailers, SME and SME associations also available in 6 languages. On level 3 all public research reports are available for the interested audience. OSIS is a unique tool that provides support with ready to use information for various questions that occur in organic food production, marketing and communication. Next to OSIS all the Ecropolis project results and dissemination activities are available on the website www.ecropolis.org.mixedM.-L. Cezanne; L. Baumgart; A. Bongartz; K. Buchecker; M. Canavari; T. Gallina Toschi; A. Kole; E. Kostyra; S. Kremer; P. Reichl; A. Spiller; S. Zakowska-Biemans; U. Kretzschmar-RĂŒger et al.M.-L. Cezanne; L. Baumgart; A. Bongartz; K. Buchecker; M. Canavari; T. Gallina Toschi; A. Kole; E. Kostyra; S. Kremer; P. Reichl; A. Spiller; S. Zakowska-Biemans; U. Kretzschmar-RĂŒger et al

    Global plant trait relationships extend to the climatic extremes of the tundra biome

    Get PDF
    The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.Peer reviewe

    Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation

    Get PDF
    Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, varia- tion in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.Environmental Biolog

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore