276 research outputs found

    Impact of Minimum Winter Temperatures on the Population Dynamics of Dendroctonus Frontalis

    Get PDF
    Predicting population dynamics is a fundamental problem in applied ecology. Temperature is a potential driver of short-term population dynamics, and temperature data are widely available, but we generally lack validated models to predict dynamics based upon temperatures. A generalized approach involves estimating the temperatures experienced by a population, characterizing the demographic consequences of physiological responses to temperature, and testing for predicted effects on abundance. We employed this approach to test whether minimum winter temperatures are a meaningful driver of pestilence from Dendroctonus frontalis (the southern pine beetle) across the southeastern United States. A distance-weighted interpolation model provided good, spatially explicit, predictions of minimum winter air temperatures (a putative driver of beetle survival). A Newtonian heat transfer model with empirical cooling constants indicated that beetles within host trees are buffered from the lowest air temperatures by approximately 1-4 degrees C (depending on tree diameter and duration of cold bout). The life stage structure of beetles in the most northerly outbreak in recent times (New Jersey) were dominated by prepupae, which were more cold tolerant (by \u3e3 degrees C) than other life stages. Analyses of beetle abundance data from 1987 to 2005 showed that minimum winter air temperature only explained 1.5% of the variance in interannual growth rates of beetle populations, indicating that it is but a weak driver of population dynamics in the southeastern United States as a whole. However, average population growth rate matched theoretical predictions of a process-based model of winter mortality from low temperatures; apparently our knowledge of population effects from winter temperatures is satisfactory, and may help to predict dynamics of northern populations, even while adding little to population predictions in southern forests. Recent episodes of D. frontalis outbreaks in northern forests may have been allowed by a warming trend from 1960 to 2004 of 3.3 degrees C in minimum winter air temperatures in the southeastern United States. Studies that combine climatic analyses, physiological experiments, and spatially replicated time series of population abundance can improve population predictions, contribute to a synthesis of population and physiological ecology, and aid in assessing the ecological consequences of climatic trends

    Intraspecific variability in growth response to environmental fluctuations modulates the stabilizing effect of species diversity on forest growth

    Get PDF
    1. Differences between species in their response to environmental fluctuations cause asynchronized growth series, suggesting that species diversity may help communities buffer the effects of environmental fluctuations. However, within-species variability of responses may impact the stabilizing effect of growth asynchrony. 2. We used tree ring data to investigate the diversity-stability relationship and its underlying mechanisms within the temperate and boreal mixed woods of Eastern Canada. We worked at the individual tree level to take into account the intraspecific variability of responses to environmental fluctuations. 3. We found that species diversity stabilized growth in forest ecosystems. The asynchrony of species' response to climatic fluctuations and to insect outbreaks explained this effect. We also found that the intraspecific variability of responses to environmental fluctuations was high, making the stabilizing effect of diversity highly variable. 4. Synthesis. Our results are consistent with previous studies suggesting that the asynchrony of species' response to environmental fluctuations drives the stabilizing effect of diversity. The intraspecific variability of these responses modulates the stabilizing effect of species diversity. Interactions between individuals, variation in tree size and spatial heterogeneity of environmental conditions could play a critical role in the stabilizing effect of diversity

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Life-history traits maintain the genomic integrity of sympatric species of the spruce budworm (Choristoneura fumiferana) group on an isolated forest island

    Get PDF
    Identification of widespread species collected from islands can be challenging due to the potential for local ecological and phenotypic divergence in isolated populations. We sought to determine how many species of the spruce budworm (Choristoneura fumiferana) complex reside in Cypress Hills, an isolated remnant coniferous forest in western Canada. We integrated data on behavior, ecology, morphology, mitochondrial DNA, and simple sequence repeats, comparing Cypress Hills populations to those from other regions of North America to determine which species they resembled most. We identified C. fumiferana, C. occidentalis, C. lambertiana, and hybrid forms in Cypress Hills. Adult flight phenology and pheromone attraction were identified as key life-history traits involved in maintaining the genomic integrity of species. Our study highlights the importance of extensive sampling of both specimens and a variety of characters for understanding species boundaries in biodiversity research

    Bud break responds more strongly to daytime than night-time temperature under asymmetric experimental warming

    Get PDF
    Global warming is diurnally asymmetric, leading to a less-cold, rather than warmer, climate. We investigated the effects of asymmetric experimental warmings on plant phenology by testing the hypothesis that daytime warming is more effective in advancing bud break than nighttime warming. Bud break was monitored daily in Picea mariana seedlings belonging to 20 provenances from Eastern Canada and subjected to daytime and nighttime warmings in growth chambers at temperatures varying between 8 and 16 °C. The higher advancements of bud break and shorter times required to complete the phenological phases occurred with daytime warming. Seedlings responded to nighttime warming, but still with less advancement of bud break than under daytime warming. No advancement was observed when nighttime warming was associated to a daytime cooling. The effect of the treatments was uniform across provenances. Our observations realized under controlled conditions allowed to experimentally demonstrate that bud break can advance under nighttime warming, but to a lesser extent than under daytime warming. Prediction models using daily time scales could neglect the diverging influence of asymmetric warming and should be recalibrated for higher temporal resolutions

    Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce

    Get PDF
    Conifers are characterized by a large genome size and a rapid decay of linkage disequilibrium, most often within gene limits. Genome scans based on noncoding markers are less likely to detect molecular adaptation linked to genes in these species. In this study, we assessed the effectiveness of a genome-wide single nucleotide polymorphism (SNP) scan focused on expressed genes in detecting local adaptation in a conifer species. Samples were collected from six natural populations of white spruce (Picea glauca) moderately differentiated for several quantitative characters. A total of 534 SNPs representing 345 expressed genes were analysed. Genes potentially under natural selection were identified by estimating the differentiation in SNP frequencies among populations (FST) and identifying outliers, and by estimating local differentiation using a Bayesian approach. Both average expected heterozygosity and population differentiation estimates (HE = 0.270 and FST = 0.006) were comparable to those obtained with other genetic markers. Of all genes, 5.5% were identified as outliers with FST at the 95% confidence level, while 14% were identified as candidates for local adaptation with the Bayesian method. There was some overlap between the two gene sets. More than half of the candidate genes for local adaptation were specific to the warmest population, about 20% to the most arid population, and 15% to the coldest and most humid higher altitude population. These adaptive trends were consistent with the genes’ putative functions and the divergence in quantitative traits noted among the populations. The results suggest that an approach separating the locus and population effects is useful to identify genes potentially under selection. These candidates are worth exploring in more details at the physiological and ecological levels

    Cold truths: how winter drives responses of terrestrial organisms to climate change

    Get PDF
    Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter
    corecore