

Western University Scholarship@Western

Biology Publications

Biology Department

2-2015

Cold truths: how winter drives responses of terrestrial organisms to climate change

Caroline M. Williams University of Florida

Hugh A.L. Henry Western University

Brent J. Sinclair Western University, bsincla7@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/biologypub Part of the <u>Biology Commons</u>, <u>Ecology and Evolutionary Biology Commons</u>, and the <u>Entomology Commons</u>

Citation of this paper:

Williams, C. M., Henry, H. A. L. and Sinclair, B. J. (2015), Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol Rev, 90: 214–235. doi:10.1111/brv.12105

Cambridge Philosophical Society

Cold truths: How winter drives responses of terrestrial organisms to climate change

Journal:	: Biological Reviews	
Manuscript ID:	Draft	
Manuscript Type:	Original Article	
Date Submitted by the Author:	n/a	
Complete List of Authors:	Williams, Caroline; University of Florida, Entomology and Nematology Henry, Hugh; Western University, Biology Sinclair, Brent; Western University, Biology	
Keywords:	snow, frost, cold, extreme events, average temperatures, freeze-thaw cycles, sub-lethal impacts, energetics, hibernation	

Cold truths: How winter drives responses of terrestrial organisms to climate
change
Caroline M. Williams ¹ , Hugh A.L. Henry ² & Brent J. Sinclair ²
¹ Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
² Department of Biology, The University of Western Ontario, London, ON, Canada
Running Title: Organismal responses to winter climate change
Key words: Snow, frost, cold, extreme events, average temperatures, freeze-thaw cycles, sub-
lethal impacts, energetics, hibernation
Correspondence: Brent Sinclair, Department of Biology, University of Western Ontario,
London, ON, Canada N6A 5B7; tel. +1-519-661-2111x83138; fax +1-519-661-3935; email
bsincla7@uwo.ca
This is the pre-peer reviewed version of the following article: Williams, C. M., Henry, H. A. L. and Sinclair, B. J. (2015), Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol Rev, 90: 214–235. doi:10.1111/brv.12105, which has been published in final form at 10.1111/brv.12105. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self- Archiving

20 Abstract

Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts, and that can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing season studies to incorporate winter.

23	37	Contents		
4 5	38	I. Introduction		
6 7 8				
9 10	39	II. Winter climate change		
12	40	III. Mechanistic bases of the biological impacts of winter climate change		
12 13 14	41	(1) Increased average winter temperatures		
15 16	42	(a) Effects on metabolic rate		
17 18 19	43	(b) Effects on development and phenology		
20 21	44	(2) Altered thermal variability		
21 22 23 24	45	(a) Intensity and regularity of winter extremes		
25	46	(b) Frequency of threshold-crossing events		
26 27 28	47	(c) Impacts of the amplitude of thermal cycles		
29 30	48	(3) Changing snow cover		
31 32 33	49	IV. Links between winter and summer responses to climate change		
34	50	V. Scaling up to populations, communities, and ecosystems		
35 36 37 38	51	VI. Predicting vulnerability to winter climate change		
39	52	VII. A call to further integrate winter into climate change research		
40 41 42	53	VIII. Conclusions		
43 44	54	IX. Acknowledgements		
45 46 47	55	X. References		
47 48 49 50 51 52 53 54 55 56 57 58 59 60	56 57			

58	I. Introduction
----	-----------------

Terrestrial organisms in temperate, alpine and polar environments may spend more than half their lives overwintering. In these habitats, winter is the period during which sustained low temperatures (usually below freezing) occur. Winter conditions vary geographically more than summer conditions (Bonan, 2003), and thus can delineate latitudinal variation in biological processes more starkly than conditions in the growing season. For example, the respective extreme maximum temperatures recorded in Montreal, Quebec (45 °N) in Canada, and Miami, Florida (25 °N) in the United States over the 1997-2000 period are 36.1 °C and 36.7 °C, whereas the respective extreme minimum temperatures at these locations, -37.8 °C and -1.1 °C, differ dramatically (data from NOAA National Climatic Data Centre (USA) www.ncdc.noaa.gov and Environment Canada climate.weather.gc.ca). Extreme low winter temperatures constrain the geographic distributions of many species, presented most graphically in the plant hardiness zones used by gardeners and farmers: data on frost susceptibility is a key component underlying these maps (Daly et al., 2012). Winter temperatures that directly cause mortality limit the northern distributions of organisms as diverse as the Virginia opossum in eastern North America (Kanda, 2005), the mountain pine beetle in western North America (Stahl, Moore & McKendry, 2006), and citrus crops worldwide (Spiegel-Roy & Goldschmidt, 2008). Winter also poses indirect challenges. Many organisms overwinter in dormancy (and therefore cannot replenish energy reserves until spring). Those organisms that remain active face resource shortages, which may be compounded by the physical barriers presented by snow and ice and the increased cost of thermoregulation. Energetic deficits accrued during the winter can lead to mortality or reduce subsequent fecundity (Hahn & Denlinger, 2011; Irwin & Lee, 2003), and overwintering energetics constrain some species' distributions (e.g. Humphries, Thomas & Speakman, 2002).

Page 5 of 76

Biological Reviews

In spite of the constraints, many species thrive in places with severe winters, and there are species that might be considered winter-dependent; for example, most Arctic vertebrates require snow and ice for their reproduction and survival (Gilg et al., 2012), and some invertebrates disperse and hunt primarily in subnivean (beneath the snow pack) spaces (Addington & Seastedt, 1999; Pauli et al., 2013). Some species that overwinter in a dormant state have evolved dependence on winter cues for termination of dormancy (Amasino, 2004; Tauber, Tauber & Masaki, 1986), and monarch butterflies rely on winter cold to reverse the direction of their fall migration (Guerra & Reppert, 2013). Many ectotherms and hibernating mammals rely on low winter temperatures to reduce consumption of energy stores (Humphries et al., 2002; Williams et al., 2012b). At the ecosystem level, freezing of soil in winter can mobilise nutrients (and/or damage roots), affecting nutrient availability and uptake, and therefore primary productivity, in the spring (Durán et al., 2013; Groffman et al., 2001). Likewise, winter conditions in many species can define organismal performance in the subsequent summer (Boggs & Inouye, 2012; Post et al., 1997; Serrano et al., 2011).

Repeated glacial/interglacial cycles, coupled with continental drift in and out of the tropics, mean that physiological and life history adaptations to winter have evolved repeatedly in multiple lineages of organisms. The evolutionary impact of winter on life histories is significant - for example, the northern temperate winter may have been a primary driver of the evolution of migratory and hibernation phenotypes (Alerstam, Hedenstrom & Akesson, 2003; Turbill, Bieber & Ruf, 2011). For ectotherms, microbes, and plants, the threat of internal ice formation has driven the evolution of physiological traits that allow them to resist low temperatures (for example, freeze tolerance in insects and plants; Margesin, Neuner & Storey, 2007). Nevertheless, both endotherms and ectotherms suffer high mortality over winter (Hodges,

104	Boonstra & Krebs, 2006; Roland & Matter, 2013; Stahl et al., 2006), and the population
105	dynamics of diverse fast-reproducing animals including lemmings and moths can be driven
106	primarily by winter mortality (Callaghan et al., 2004; Virtanen, Neuvonen & Nikula, 1998).
107	Anthropogenic climate change is rapidly altering biological systems, and winter
108	conditions are changing particularly rapidly (IPCC, 2007). Differential sensitivity of organisms
109	to climate change is restructuring biological communities due to disparate range and phenology
110	shifts, and altered population dynamics (Chen et al., 2011a; Walther, 2010), and – where the
111	proximate cause is known – many biological responses to climate change are driven by changes
112	in winter conditions (e.g. Battisti et al., 2005; Crozier, 2004). To guide mitigation efforts under
113	global climate change, we must identify which species or populations will be "winners" –
114	benefitting from climate change, and which "losers" will be vulnerable to changes (Somero,
115	2010). However, the interactions between snow and temperature that determine microclimate
116	conditions combine with divergent ecological and physiological strategies for dealing with
117	winter stress, leading to variation among species in responses to winter climate change. In some
118	cases, these idiosyncratic responses to winter likely underlie the failure of models to accurately
119	predict species' responses to climate change (Cook, Wolkovich & Parmesan, 2012). A limited
120	understanding of organismal responses to winter climate change (and their cascading effects
121	through communities and ecosystems) thus impedes efforts to predict the biological impacts of
122	climate change in general.
123	The interaction between a species' traits (and the plasticity of those traits; Chown et al.,

The interaction between a species' traits (and the plasticity of those traits; Chown et al., 2007; Somero, 2010) and changes in the abiotic environment will determine success or failure in a changing world (Foden et al., 2013), so predictions would ideally utilise information on species traits combined with climate models to output vulnerability. Meta-analyses have shed some light

Page 7 of 76

Biological Reviews

on the relationship between species' traits and their responses to environmental change (e.g.
Bokhorst et al., 2012a; Diamond et al., 2011; Jiguet et al., 2007; Thackeray et al., 2010),
however, these analyses have not been in the context of winter, nor have they synthesised across
diverse taxa and abiotic drivers. Thus, we need a framework to identify climate-changesusceptibility that explicitly includes winter processes and incorporates evolution, ecology and
physiology. An essential starting point is a synthesis of the mechanistic bases for the complex
responses to interacting winter climate drivers across terrestrial taxa.

Here we present a multi-component framework for predicting the impact of change in abiotic winter drivers on a terrestrial organism. We begin by describing the predicted changes in winter climate, then synthesise the mechanistic bases for the biological impacts of winter climate change across terrestrial taxa and regions. We use this synthesis to identify key traits that make species susceptible to changing winter conditions, and integrate the current state of knowledge on impacts of winter climate change within the body of knowledge of growing season processes. We focus on traits influencing exposure and sensitivity to a particular stress, which may arise from a number of drivers or interactions between drivers, and through both biotic and abiotic processes. Our review is not meant to be exhaustive in scope, but rather to draw on representative examples across taxa to illustrate the main biological impacts of winter across a range of terrestrial organisms, to provide a starting point for readers to access the literature relevant to their system, and to guide future research in the field of winter-focused global change biology. This framework is designed to provide researchers with the means to navigate from change in a climate driver to a list of potential biological impacts an organism may experience, and to make a qualitative assessment of the likelihood of any terrestrial organism to suffer a given biological impact.

1			
3			
4 5			
5 7			
3 9			
1 1	0 1		
1: 1:	22		
1.	3 4 5		
	<u>6</u>		
1 1:	7 8		
1	ğ n		
2	1 2		
	3 4		
2	5		
2	b 7		
2	8 9		
3 3	0 1		
3: 3:	2 3		
3. 3	45		
3			
3 4	0		
4 4 4			
4 4 4	6		
4 4			
4 5			
5	1		
5	3 ⊿		
	5		
יכ 5	0 7		
5	8 9		
6	0		

151 II. Winter climate change

Mean winter air temperatures are increasing globally, but the magnitude of 152 153 predicted winter climate change varies by region (Figure 1A; IPCC, 2007), and is subject to complex feedback mechanisms and interactions between snow- and ice-cover and temperature. 154 155 While increased temperature alone decreases snow cover, climate models predict that winter precipitation may increase, decrease or change in timing or duration depending on the region 156 (Figure 1B), which means that snow depth may stay the same or even increase in some regions, 157 158 such as parts of the Arctic (Symon, Arris & Heal, 2005). Many organisms overwinter beneath snow, and snow cover is a critical mediator of soil microclimate; in particular, both reduced 159 160 precipitation and increased mean air temperatures can increase the frequency and intensity of soil 161 freeze-thaw cycles (Figures 2B, D; Brown & DeGaetano, 2011). Although the Arctic is predicted to experience the most extreme winter warming, changes in snow cover and soil freezing in this 162 region are less sensitive to warming than in northern temperate regions, which feature a 163 shallower snowpack and remain closer to melt temperatures over winter (Henry, 2008). The 164 changing physical conditions of winter can also modify winter length; for example, 'vanishing 165 166 winters' are predicted for low-latitude temperate regions, where persistent snow cover and soil freezing become rare or completely absent (Kreyling & Henry, 2011), and the 'average' winter 167 may be getting shorter in temperate North America, where the first autumn frost has been getting 168 169 later, and the last spring frost earlier, for several decades (Kunkel et al., 2004).

171 [Figure 1 here]

172

170

Page 9 of 76

Biological Reviews

In addition to changes in mean temperature and precipitation, an increased frequency of extreme weather events can increase the incidence, frequency and intensity of soil freezing, either as a result of unusually early or late winter frost events, or as a result of mid-winter warming (or rain) events that reduce snow cover and are followed by freezing temperatures (Figure 2C). There has been an overall increase in the frequency of extreme thermal events in both summer and winter, and further increases are predicted over the next century (Easterling et al., 2000). Increases in extreme minimum and maximum temperatures in recent decades have varied among seasons and among regions, but overall there has been an increased number of days of extreme high minimum temperature and a reduced number of days of extreme low minimum temperature (Caprio, Quamme & Redmond, 2009; Easterling et al., 2000). For example, across Canada the number of cold nights (minimum temperatures below the 10th percentile for the 20th century) decreased by 15 per year between 1950 and 2003 (Vincent & Mekis, 2006). The frequency of both extreme high temperatures and longer mid-winter warm spells is expected to increase with climate change in some regions (Liu et al., 2006).

188 [Figure 2 here]

Aside from thermal stress, interactions between temperature and moisture during winter can alter the occurrence of physical stresses such as ice encasement and frost heave (the uplift of soil when freezing water in soil expands), and increased rainfall over winter will increase the frequency of rain-on-snow events, which contribute to ice encasement. Rain-on-snow events have increased in most Arctic regions, in some cases by up to 50% (ACIA, 2005). Furthermore, changes in albedo and permafrost depth can modify water retention by the soil, which can alter

the nature of below-ground freeze-thaw (Oztas & Fayetorbay, 2003). Changes in sea or lake ice can also exacerbate terrestrial climate change, for example by increasing moisture availability, leading to increased snow depth in maritime areas, or by modifying albedo and accelerating spring melt (Deser et al., 2010). With the emphasis on temperature effects in winter research, such interactions with moisture have often been overlooked, and consequently our discussion of these specific moisture effects remains speculative (and is often absent) throughout much of this review.

III. Mechanistic bases of the biological impacts of winter climate change

The primary abiotic drivers of the biological impacts of winter on terrestrial systems are temperature and snow cover. Temperature determines rates of biological processes, and thermal variability impacts the likelihood of crossing important biological thresholds (e.g. the freezing point of tissues). Snow strongly modifies both the physical and the thermal environments. Changes in the absolute variability of these factors (as well as their timing and synchrony) can modify the interaction and outcomes of snow cover and temperature. In Figure 3, we describe how these drivers interact to determine biological impacts, and we show the direction of impact of changes in some of these drivers (which we elaborate below). Ultimately, the susceptibility of organisms to winter (see Table 1 for a description of the traits influencing vulnerability to winter changes), and the way these impacts combine and synergise with impacts of climate change during the growing season will determine the winners and losers under global climate change, and understanding these processes will be essential for informed management of biodiversity in a changing world.

2 3 4	219	[Figure 3 here]
5 6	220	
7 8 9	221	[Table 1 here]
10 11 12	222	
13	223	(1) Increased average winter temperatures
14 15 16	224	(a) Effects on metabolic rate
16 17 18 19	225	Increased average temperatures can arise either as a direct result of climate warming, for
20	226	organisms whose habitats are not buffered from ambient temperatures, or from increased snow
21 22 23	227	cover with associated thermal buffering (Figures 2A-B, Figure 3). Increased average
24 25	228	temperatures can impact energy stress and phenology by increasing rates of development or
26 27 28 29 30 31 32 33 34 35 36 37	229	metabolism (Figure 3). Temperature influences metabolism, and thus consumption of stored
	230	energy by 1) directly determining the rates of metabolic processes (such as respiration and
	231	carbon fixation) in poikilotherms and 2) determining the costs of thermoregulation by
	232	homeotherms. Thus, increased average temperatures will increase rates of metabolism of
	233	poikilotherms, while for homeotherms below the thermoneutral zone, metabolic rates will
37 38 39	234	decrease with increased average temperature due to the decreased cost of thermoregulation
40 41 42	235	(Table 1).
43 44 45	236	A higher metabolic rate will increase the rate of use of stored energy reserves, which can
40		(Einer 2) Ersensels in the second state of the

n g expose non-feeding organisms to energetic stress (Figure 3). For example, hibernating bats expend more energy when hibernaculum temperatures are above an optimal low temperature (Humphries et al., 2002), dormant hatchling turtles consume more energetic reserves and emerge in poorer physiological condition after warm winters (Muir et al., 2013), and energy drain means that goldenrod gall flies that overwinter in relatively warm subnivean microclimates have

reduced survival and fecundity compared to conspecifics overwintering in exposed, colder sites, because their metabolic rates increase exponentially with temperature (Irwin & Lee, 2003). All else being equal, this energy drain is likely to be more pronounced in organisms with high baseline metabolic costs, and less pronounced in organisms, such as diapausing butterfly pupae, that substantially suppress their metabolism during winter (Table 1; e.g. Williams, Hellmann & Sinclair, 2012a).

Increased rates of biological processes may permit energy gain for organisms that can take up nutrients during the winter. For example, increased winter temperatures increase photosynthetic rates and thus carbon gain in non-dormant plants as long as water is available, although this effect is more pronounced in woody than in herbaceous species (Ensminger, Busch & Hüner, 2006). Similarly, the mineralization of limiting nutrients such as nitrogen increases with soil temperature over winter (Sturm et al., 2005), which can increase primary productivity, assuming that nutrient release and uptake are synchronised (Groffman et al., 2001).

For homeotherms, the energetic costs of thermoregulation during winter can rival or exceed energetic costs of the breeding season, yet occur at a time when food availability may be low (Squeo et al., 2012). An increase in average winter temperatures will thus lower metabolic costs of thermoregulation in homeotherms that would normally experience winter temperatures below the thermoneutral zone, which may alleviate energetic stress (Figure 3; Sears et al., 2009). A release from energetic stress as a result of winter climate change may have led to recent increases in body size of American martens, either via decreased thermoregulatory costs or increased prey availability (which will reduce energetic stress by increasing nutrient uptake; Yom-Tov, Yom-Tov & Jarrell, 2008). Increased body size and/or condition will likely translate into fitness benefits by decreasing overwinter mortality (Hodges et al., 2006), or improving

Page 13 of 76

Biological Reviews

condition at the onset of the breeding season (e.g. Guillemain et al., 2008). Alternately, decreased thermoregulatory costs may increase fitness by reducing the need for pre-winter energy accumulation, which could mitigate trade-offs and predation risk associated with resource acquisition (Gentle & Gosler, 2001). By contrast, warmer winters may lead to summer energy drain for species such as polar bears that feed primarily during winter and fast in the summer. Warmer winters reduce the length of sea ice stability, resulting in a shorter period in which polar bears can acquire their year's nutrients, offsetting any thermoregulatory benefits (Robbins et al., 2012).

However, direct evidence for energetic and performance consequences of winter warming in homeotherms is scarce. Changes in variables correlated with increased temperatures - such as snow cover, resource availability, and precipitation – make it difficult to isolate the impacts of temperature in observational studies, which form the majority of published work to date. For example, although they presumably provide a thermoregulatory advantage, warm winters reduced maternal investment in reproduction in red deer resulting in smaller offspring. This effect was probably driven by increased costs of locomotion in the deeper snow characteristic of warm winters, rather than increased temperature per se (Post et al., 1997). Thus, the impact in this case was driven by an interaction among abiotic drivers (Figure 3).

282 (b) Effects on development and phenology

In addition to altering energy balance, increased average temperatures during winter generally promote development at times of year when it would traditionally be arrested, leading to earlier spring, and later autumn, phenology for the majority of terrestrial taxa (Figure 3; Jeong et al., 2011; Walther, 2010). These phenological shifts have been particularly pronounced in cold regions such as the Arctic (Høye et al., 2007). However, significant variation exists in

phenological plasticity within communities; for example, phenological shifts have been faster at
lower trophic levels (Table 1; Both et al., 2009; Thackeray et al., 2010), and within the insects,
these shifts are less pronounced in species with specialised diets or that overwinter at earlier life
stages (Table 1; Diamond et al., 2011).
For primary producers, or animals that are not limited by resource availability,
performance is likely to be enhanced by maximally-advanced spring phenology and maximallydelayed autumn phenology (Table 1). Shortening the period of dormancy will allow greater

resource accumulation during the growing season, and less energetic stress during winter. If this hypothesis is correct, performance will be enhanced in organisms whose phenology is strongly temperature-sensitive and which can therefore respond to increases in average temperatures by rapid shifts in their growing season. Indeed, the ability to respond to climate change by advancing spring phenology strongly enhances fitness and persistence in plants (e.g. Fridley, 2012), presumably by lengthening the growing season and increasing resource accumulation (Pigliucci & Marlow, 2001). A recent evolutionary shift towards later autumn phenology has also been recorded in pitcher plant mosquitoes, implying fitness gains from an extension of the length of the growing season (Bradshaw & Holzapfel, 2001), perhaps because resources are not temporally limited for mosquito larvae feeding on microbes in the contained pitcher plant ecosystem.

By contrast, phenological synchrony with crucial resources will likely be more important than growing season or winter length in determining fitness of organisms at higher trophic levels whose resources are temporally limited. This means that the optimal phenotype will depend on the phenology of the neighbouring trophic levels (Table 1). This dependence occurs because variation in phenological shifts can cause community mismatches, wherein resources for higher Page 15 of 76

Biological Reviews

trophic levels are no longer synchronised with periods of demand. We will discuss the community-level implications in more detail below (section V), but the salient point at the organismal level is that a mismatch between food demand and availability is likely to apply strong selective pressure on higher trophic levels to maintain synchrony with the trophic levels below. Supporting the hypothesis that phenology may evolve to enhance synchrony with the trophic level below, winter moth caterpillars have evolved a later spring hatching date in response to warming, which has increased synchrony with budburst of its host plant (oak), and presumably imparted higher fitness despite a shorter growing season (van Asch et al., 2013). Thus, the pattern of selection on phenology likely differs among trophic levels, with producers or animals for which resources are available year-round experiencing consistent selection for maximal spring advances and autumn delays, while higher trophic levels experience divergent selection pressures that depend on the responses of the trophic level immediately below. This differential selection across trophic levels could explain why the responses of plant phenology to climate change show a strong phylogenetic signal (Willis et al., 2008), while the responses of insect phenology do not (Diamond et al., 2011): consistent selection on phenology in producers preserves the phylogenetic signal, while divergent selection on phenology at higher trophic levels reduces similarities across the phylogeny. Therefore, although it is likely that phenological shifts will alter resource availability and thus energy stress for consumers whose resources are temporally restricted, determining whether the impact will be positive or negative requires consideration of the phenological responses of organisms at lower trophic levels (Figure 3, Table 1). Organisms for which seasonal timing is physiologically fixed, and that therefore have inflexible phenology, may suffer the most pronounced negative impacts of changing winter length and timing with climate change (Post & Forchhammer, 2008).

Many plants and insects have chilling or vernalisation thresholds that must be met before post-winter development can resume. In these cases, warmer winters can slow development, leading to phenological delays (rather than advancement) in spring (e.g. Forrest & Thomson, 2011; Luedeling et al., 2011). Most studies report an advance in spring phenology, although these are also intermixed with delays or lack of responses in many systems (Thackeray et al., 2010); these delays are consistent with widespread effects of a reduction in chilling units (Cook et al., 2012). Phenological delays have been well-documented in meadow and steppe plant communities on the Tibetan Plateau, where the beginning of the growing season advanced in response to climate warming for the first half of a 20-year warming period, but was subsequently delayed despite continued climate warming (Yu, Luedeling & Xu, 2010; but see Zhang et al., 2013). These phenological delays are consistent with insufficient vernalisation (too little accumulated cold exposure to end dormancy). However, these observations could also arise from the observed decrease in snow depth over this period, which may have reduced the insulation of the roots and, counter-intuitively, resulted in colder conditions despite warming air temperatures (Yu et al., 2013). There is no way to separate these proximal mechanisms from the available data, although this could be achieved through either autecological experiments on chilling requirements (e.g. Santiago et al., 2013) or experimental snow manipulation (e.g. Groffman et al., 2001).

Average temperatures will thus affect energy balance in two ways – directly, through rates of metabolism, and indirectly, through phenology and the resulting length of winter (Figure 3). This introduces an important dichotomy in responses to winter climate change among dormant plants and insects: for cold-adapted species with high chilling or vernalisation requirements, increases in winter temperature will increase both overwinter energy use (by

increasing metabolic rates) and winter length (by increasing development time). These changes will amplify the deleterious effects of warming for cold-adapted species. If failure to meet chilling requirements decreases the viability of populations, it may prove to be a proximate driver of range contractions at the equatorial range limit in some species. By contrast, for warmadapted species that do not have chilling or vernalisation requirements, although warming will still increase overwinter energy use, it will also shorten the period of dormancy by advancing spring phenology. This could mitigate the direct negative effects of winter warming on energetics of warm-adapted species. (2) Altered thermal variability Winter temperatures fluctuate on multiple temporal scales, ranging from diel temperature fluctuations, through short term cycles associated with weather fronts, to seasonal changes (Deere & Chown, 2006; Gaines & Denny, 1993; Marshall & Sinclair, 2012a; Marshall & Sinclair, 2012b). The magnitude of these fluctuations varies spatially both with microhabitat (Marshall & Sinclair, 2012b), and across larger scales influenced by continentality, latitude and topography. Snow cover will drive much of this variability, so snow cover predictions must be taken into account to determine likely trends in variability in each of these components (Figure 2). Changes in the seasonal timing of snow cover will exacerbate altered timing of extreme low temperatures (Figure 2). Changes in thermal variability will impact energy balance, phenology, and cold injury through effects on metabolism, development, and freeze/thaw cycles as described below (Figure 3). Species-specific sensitivity to changes in this variability may be particularly important in determining organisms' responses to winter climate change, although we note that changes in variability are extremely difficult to predict, even when only extreme events are

considered (Easterling et al., 2000). There are three salient components of fluctuations in winter thermal conditions: a) the intensity and regularity of extreme high and low winter temperatures;
b) the frequency with which temperatures cross important physical thresholds (e.g. the freezing point of water) or biological thresholds (e.g. thresholds for cold-induced damage); and c) the amplitude of thermal cycles on both diel and short-term scales (such as during storm events).
(a) Intensity and regularity of winter extremes

Extreme low temperature events can cause cold injury, and winter mortality or injury is an important component of demographics for many species (e.g. Aukema et al., 2008; Kanda, 2005; Spiegel-Roy & Goldschmidt, 2008; Sutherst & Maywald, 2005). Thus, a reduction in the intensity or duration of extreme winter low temperatures could increase winter and post-winter survivorship (Table 1; e.g. Tran et al., 2007; Trotter & Shields, 2009), directly influencing the poleward or upper altitudinal range limit of a species (e.g. Crozier, 2004; Neuvonen, Niemelä & Virtanen, 1999). However, there are cases where extreme low temperatures do not directly limit population persistence or geographic range. For example, the monophagous holly-leaf miner (an agromyzid fly) is more cold tolerant than its host plant (holly, *Ilex aquifolium*), and its northern range limit in Europe is therefore likely set by the factors that set the host range, rather than directly by extreme low temperatures (Klok, Chown & Gaston, 2003). In such cases, amelioration of extreme low temperatures will not directly affect survival, but could still indirectly lead to range expansion if low temperatures are the primary determinant of resource availability.

Changes in thermal variability can modify the timing, predictability and sequence of
extreme events over winter. Because many species have life stage-specific tolerance to winter
conditions (e.g. diapause-linked cold tolerance in insects, Leather, Walters & Bale, 1993; and

Page 19 of 76

Biological Reviews

aquatic overwintering in adult frogs, Tattersall & Ultsch, 2008), there is potential for changes in the seasonality of extremes to lead to mismatches between the occurrence of extreme events and the behavioural or physiological mechanisms that allow organisms to tolerate them. In particular, organisms with seasonally-programmed responses, or those which irreversibly lose cold tolerance during winter warm spells, will be more vulnerable to unseasonable temperature extremes than those with constitutively high or rapidly-modified tolerances (Table 1). For example, extremely warm mid-winter temperatures cause an irreversible loss of winter acclimatisation and the resumption of development in the emerald ash borer (Agrilus planipennis, Coleoptera, Buprestidae), making them susceptible to subsequent cold snaps (Sobek-Swant et al., 2012). Extreme warm periods in spring can also lead to breaking of dormancy in plants, with subsequent extreme events killing buds and preventing reproduction or growth the following season, as occurred in the unusual North American springs of 2007 (Augspurger, 2009; Gu et al., 2008) and 2010 (Hufkens et al., 2012). Indeed, a 124-year temperature dataset combined with observations of frost susceptibility in Illinois, USA shows that the frequency of damaging spring frost events has increased in recent decades (Augspurger, 2013). At the beginning of winter, unusual extreme events before organisms have accumulated programmed physiological protection can also lead to damage. For example, the grass *Bromus rubens* may be excluded from the intermountain steppe biome of western North America as a consequence of sudden freeze events in late autumn before the onset of (programmed) winter cold tolerance (Bykova & Sage, 2012). Thus, organisms that develop low temperature tolerance in a programmed fashion (e.g. in response to photoperiod), or that have delayed the onset of winter hardening as part of a phenological shift, may be more vulnerable to changes in the

425 occurrence of extreme events in autumn than organisms that can use temperature as a cue to426 rapidly increase early winter cold hardiness (Table 1).

427 (b) Frequency of threshold-crossing events

Changes in the frequency, intensity, or duration of extreme events could modify the frequency with which biologically-important thresholds are crossed. For example, the 0 °C threshold delineates the availability of liquid water and the beginning of soil freezing. Similarly, species-specific physiological thresholds exist, such as the temperatures at which ice formation and melting occur; crossing these thresholds can determine sub-lethal impacts (e.g. Marshall & Sinclair, 2010), survival (e.g. Régnière & Bentz, 2007) and overwinter energetics (e.g. Sinclair et al., 2013) In some regions (e.g. maritime-buffered habitats in the southern hemisphere; Chown et al., 2004), temperatures already hover near the 0 °C threshold: increases in mean temperatures will likely reduce the occurrence of freeze-thaw cycles in such environments, reducing the stress of threshold-crossing events. By contrast, increasing mean temperatures (or decreasing snow cover, see below) may increase the incidence of freeze-thaw in northern temperate habitats, and thus may increase the frequency of such transitions.

The implications of repeated freeze-thaw are not well-understood, but the impacts appear to be largely negative. In invertebrates, repeated freeze-thaw can lead to a variety of deleterious consequences, due to both cold injury from the repeated cold exposure, and increased energy expenditure during repair and recovery in thaw periods (Marshall & Sinclair, 2012a). In freeze-tolerant *Rana sylvatica* frogs, carbohydrate energy reserves provide both fuel for the energy expended during freezing and the cryoprotectants for survival of freezing itself. In this species, repeated freeze-thaw both depletes energy reserves and reduces cold tolerance, suggesting the possibility for substantial fitness reductions with increased freeze-thaw (Sinclair et al., 2013).

Page 21 of 76

1

Biological Reviews

∠ 3	
4	
5	
ю 7	
8	
9	
10 11	
12	
13	
14 15	
16	
2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17	
18 19	
20	
21	
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	
24	
25	
26 27	
28	
29	
30 31	
32	
33	
34 35	
36	
37	
37 38 39 40	
40	
41	
42 43	
44 45	
46 47	
48	
49 50	
51	
52	
53 54	
55	
56	
57 58 59	
59	
60	

Repeated freeze-thaw cycles increase the risk of xylem embolism in conifers due to the
expansion of gas bubbles during thawing that were formed upon freezing (Mayr, Gruber &
Bauer, 2003). Increased intensity or frequency of soil freeze-thaw cycles can increase the lysis of
soil microorganisms and damage to plant roots, intensifying leaching and trace gas losses of soil
nutrients (Groffman et al., 2001).

453 In some cases, the impacts of repeated events such as freezing may not be cumulative. For example, elevated losses of soil nutrients may only occur in response to exceptionally severe 454 frost soil events, and pools of frost-vulnerable materials in the soil are finite. Once the bulk of 455 456 soil nutrients in these frost-vulnerable pools have been released, subsequent events may not result in further loss (Matzner & Borken, 2008). Thus, increased frequency of freeze-thaw can 457 458 have detrimental effects in organisms for which the responses are cumulative, but for organisms 459 or systems where the impact of repeated cold exposure reaches an asymptote (e.g. nutrient leaching), the impacts of repeated events may be less important (Table 1). However, at this point 460 461 too little is known about the impacts of repeated stress (or about interactions among multiple stressors) to allow generalities to be constructed. 462

463 *(c) Impacts of the amplitude of thermal cycles*

Increases in daily thermal variability can increase rates of metabolism and photosynthesis in poikilotherms (Figure 3), because of the curvilinear relationship between temperature and most biological rate processes. Jensen's inequality is a mathematical property of nonlinear functions, which states that the mean of a nonlinear response variable cannot be predicted based on the mean of the driver variable alone, but requires knowledge of the variability of the driver variable and the shape of the response function (Ruel & Ayres, 1999). For example, if the response function is accelerating over the range of temperature fluctuations (as is frequently the

case with metabolic rate in ectotherms), the mean of the response variable will be elevated compared to its value at the mean temperature, and increasing thermal variability will further increase the mean of the response variable, even without a corresponding increase in the mean temperature. Thus, increases in thermal variability have the potential to exacerbate the impacts of an increase in mean temperature on metabolism (Ruel & Avres, 1999). Additionally, thermal performance curves are asymmetric (fitness rapidly declines above the thermal optimum; Angilletta, 2009), and thus Jensen's inequality means that the impact of changes in temperature will also be asymmetric: temperatures above the thermal optimum will reduce fitness far more than temperatures an equal amount below the thermal optimum. This effect of Jensen's inequality can be exacerbated or mitigated by modifying the shape of the rate-temperature relationship: a steeper curve (i.e. higher temperature sensitivity) will lead to a more pronounced impact (Ruel & Ayres, 1999), suggesting that organisms with high temperature sensitivity or thermal optima that are close to environmental temperatures will experience greater impacts of changes in thermal variability (Table 1; Foden et al., 2013). Exacerbated thermal variability will therefore allow potentially-active ectotherms to take better advantage of warm spells during winter fluctuations. However, lower thermal sensitivity will

reduce vulnerability to thermal variation, for example in energy-conserving overwintering
ectotherms (Williams et al., 2012b). Thus, short-term (e.g. daily) thermal variability likely
exerts a strong selective pressure on temperature-rate relationships in ectotherms and plants,
however, few studies to date have examined the impacts of daily thermal variability on
overwintering organisms.

492 For dormant organisms, thermal variability will thus be an important determinant of
493 overwintering energy use, particularly at winter's peripheries when temperatures are relatively

Biological Reviews

warm and variable. In this context, seasonal timing will be a critical determinant of a species' susceptibility to overwinter energy drain resulting from alterations to thermal variability. Species that enter dormancy early in the autumn will experience significant energy drain as a result of delayed winter onset, and an increase in thermal variability during autumn will thus exacerbate this energy drain because of Jensen's inequality (e.g. Sinclair et al., 2013; Williams et al., 2012b). By contrast, species with delayed spring emergence, including insects such as *Rhagoletis pomonella* that infest summer-fruiting trees (Feder, Hunt & Bush, 1993), will likely be more susceptible to earlier, more variable, and warmer springs. By contrast, increased buffering (e.g. due to longer snowpack persistence; Decker et al., 2003) might reduce variability, mitigating the impact of the longer post-winter period.

Flexibility of the thermal sensitivity of biological processes or phenology will therefore be a key determinant of the outcome of changing thermal variability during winter and its associated dormancy (Figure 4). Suppression of thermal sensitivity of metabolism mitigates the impact of increased thermal variability (Williams et al., 2012b). In herbivores, for which entry into dormancy is likely mediated by a decline in host plant quality (Prior et al., 2009), such plasticity is essential, but may not fully compensate for increased autumn variability (Williams et al., 2012b). In many species, the onset of dormancy is controlled hormonally and entrained to photoperiod (Tauber et al., 1986), apparently reducing the capacity for flexibility because of the programmed nature of the response. However, evolutionary changes in the induction of dormancy as a result of climate change have been observed in a photoperiod-cued pitcher plant mosquito (Bradshaw & Holzapfel, 2001). Similarly, butterfly larvae show state-dependent responses to photoperiod, allowing facultative shifts in dormancy onset and behaviour both before and after dormancy to buffer the impact of reduced growth capacity at higher latitudes

517	(Gotthard, Nylin & Wiklund, 1999; Gotthard, Nylin & Wiklund, 2000). It is conceivable that
518	such plasticity could also act to mitigate the impacts of winter energy drain.
519	
520	[Figure 4 here]
521	
522	Overall, while it is clear that the frequency, timing and amplitude of temperature
523	variability dictate the severity of winter's effects on organisms, the examples presented above
524	derive primarily from studies on insects. For organisms with more resilient or resistant
525	overwintering stages (e.g. plant seeds) these effects may be less severe. The ultimate influence
526	of extreme winter temperature events on populations, communities and ecosystems will be a
527	function of both the severity and frequency of these events, and extremely severe events may
528	only occur infrequently. However, extreme events that lead to threshold changes in community
529	trajectories will remain influential over the longer term (Kreyling, Jentsch & Beierkuhnlein,
530	2011).
531	
532	(3) Changing snow cover
533	The strong influence of snow cover on the soil and subnivean microclimate (Figure 2;
534	Decker et al., 2003; Henry, 2008; Pauli et al., 2013) has important consequences for the
535	condition and survival of organisms that overwinter in these environments, and as a result,
536	changes in snow cover with climate change can result in many different biological impacts
537	(summarised in Table 2). Because snow is an effective insulator, reduced snow cover can
538	expose soil systems to more extreme low temperatures (Brown & DeGaetano, 2011), described
539	by Groffman et al. (2001) as 'colder soils in a warmer world', which in turn can increase

Biological Reviews

mortality for organisms overwintering in or on the soil. Beetles overwintering in the soil beneath snow in the US prairies had higher survival than those that overwintered in soil with snow removed, but this difference in survival was only seen in relatively cold winters (Joshi, Olson & Carey, 2009), and the number of times per month that New Zealand alpine cockroaches were predicted to freeze and thaw ranged from zero to more than 20, depending on snow cover (Sinclair, 2001). Lemming nest density was positively correlated with snow depth when snow cover was experimentally manipulated, presumably because the deep, dry snow layer buffered the small mammals from extreme temperatures (Reid et al., 2012). [Table 2 here] Thermal buffering by snow leads to a counterintuitive observation – organisms from very cold and snowy regions are frequently less cold tolerant than those from regions with a shallower and less-persistent snow-pack. For example, despite the expectation that frost tolerance increases with increasing latitude within species, northern (snow-insulated) ecotypes of temperate grasses have low frost tolerance relative to their conspecific, southern ecotypes that experience less snow cover (Dionne et al., 2001). Increased soil freezing as a consequence of decreased snow cover might therefore be particularly damaging for organisms adapted to snowy winters. Mid-winter melts can increase soil exposure to freeze-thaw with consequent damage to plants and soil fauna (Bokhorst et al., 2011; Bokhorst et al., 2012a), and these melts also can lead to ice encasement and subsequent anoxia, further stressing soil organisms (Coulson et al., 2000). Despite the potential benefits of snow cover for frost protection, the mild subnivean microclimate can be energetically costly for organisms, because overwinter temperatures determines their energy

563 consumption (Figure 3). For example, gall flies overwintering below the snow have increased 564 energy consumption compared to those above the snow (Irwin & Lee, 2003). Snow cover thus 565 strongly influences levels of energy stress and cold injury indirectly, through its effects on 566 temperature (Figure 3), and changes in local patterns of snow cover therefore have the potential 567 to alter habitat suitability on a very small scale.

Snow also impacts organisms directly by modifying the physical environment: both the quantity and the quality of snow can have profound effects, particularly on the biology of winter-active mammals. While the effects of changing snow cover can be assessed experimentally for sessile or small organisms (e.g. Groffman et al., 2001; Reid et al., 2012), the limited spatial scale of most snow manipulation experiments makes it difficult to assess snow depth effects on large or highly mobile animals under controlled conditions. Nevertheless, observational studies can be used to correlate biological responses to interannual variation in snow depth. For example, wolves form larger packs in response to deeper snow (Post et al., 1999), but increased snow depth also reduces mobility of their deer prey (Fuller, 1991). Reduced snow cover may also increase resource availability for winter-active predators and browsers by improving access to food (Figure 3; Martin & Maron, 2012) – which necessarily means that decreased snow also increases predation risk for small mammals which have less protection from predators and extreme temperatures (Yoccoz & Ims, 1999). However, the impacts of changing snow cover are complex: declining snow cover in Canada is associated with decreased wolverine population growth rate; the causal factors for this decline likely include reduced denning sites, decreased prey success and reduced snow-related mortality of the ungulates upon whose carcasses wolverines scavenge (Brodie & Post, 2010). Snow quality, determined more-or-less directly by temperature, also determines the winter performance of many organisms, as changes in the

Page 27 of 76

Biological Reviews

	586	density of snow modifies its insulative properties and affect locomotion, while ice layers can
	587	modify access through the snowpack. For example, increased frequency of rain on snow events,
0 1 2 3 4 5 6 7 89	588	and subsequent ice-up, blocks access to food for herbivores such as reindeer (Hansen et al.,
	589	2011) and small mammals (Kausrud et al., 2008; Korslund & Steen, 2006).
	590	The timing of snow lie is also critical for many organisms, but the direction of impact
	591	strongly depends on species' traits. Early snowmelt can have positive effects for large browsers
	592	such as reindeer, which produce calves with increased body mass in the autumn following an
0	593	early spring snowmelt (Pettorelli et al., 2005). However, if early snow melt causes the
1 2 3 4	594	resumption of activity before resources are available or interrupts winter feeding opportunities,
4 5 6 7 8	595	the effects can be detrimental: early snowmelt can result in food scarcity for hibernating
	596	mammals, such as marmots, that emerge early in response to warmer air temperatures, but before
9 0	597	the spring flush of plant growth (Inouye et al., 2000), and early ice breakup increases mortality in
3 4 5 6 7 8 9 0	598	polar bear by reducing the length of the winter feeding season and increasing the length of the
	599	summer fast (Regehr et al., 2007). By contrast, increased spring snowstorm activity with climate
	600	change in some regions can lead to delayed snowmelt, delaying the emergence of ground
	601	squirrels and reducing their fitness by reducing the length of the active season (Lane et al.,
	602	2012). However, organisms that overwinter in subnivean spaces in very cold environments may
3 4 5	603	benefit from an extension to the protective insulation of snow – for example, peak floral
6 7	604	abundance of montane plants is increased after delayed snow melt, due to decreased frost
8 9	605	damage in spring (Inouye, 2008).
0 1	606	Mid-winter snowmelt caused by extreme events (best-studied because of their effect on

hydrology; e.g. Kurian, Lautz & Mitchell, 2013) will not only affect overwinter soil temperatures (see above), but also provide liquid water for plants and animals that might otherwise suffer from

a water deficit, such as hibernating mammals (e.g. Ben-Hamo et al., 2013). Conversely, increased free water may increase rates of heat loss and risk of flooding, decreasing survival of small mammals (Kausrud et al., 2008). In Greenland, warmer summers result in the accumulation of cold meltwater, delaying flowering and shortening the flowering period of several angiosperms (Høye et al., 2013). These roles of liquid water in determining winter physiology and spring phenology in terrestrial systems during winter have received little attention, so the trade-off of negative and positive effects for organisms remains a matter for speculation.

IV. Links between winter and summer responses to climate change

The condition of organisms emerging from the winter will determine their performance during the growing season, and similarly their growing season performance will determine their condition going into the winter and subsequent winter performance (Figure 5). Taking a cross-seasonal perspective will therefore be necessary to identify negative impacts of climate change. For example, advanced spring phenology and increased spring abundance of a perennial herb in Britain resulted from winter warming, but this was tempered by a decrease in reproductive output by those plants (Fox et al., 1999). Similarly, early snow melt increased survival in conifers, but at the expense of growth rates (Barbeito et al., 2012). Where data on post-winter performance are lacking, links from winter condition to the growing season may often be inferred. For example, winter energy use can determine adult body size in butterflies (Williams et al., 2012a), and the clear size-fecundity relationship in female butterflies (Boggs & Freeman, 2005) implies a fitness consequence of this winter effect. The resilience of organisms to winter energetic stress can also be determined by post-winter processes (Table 1), with resilience decreased in organisms with limited opportunities for post-winter resource acquisition (Breed,

Biological Reviews

Stichter & Crone, 2013), or for which juvenile-derived reserves are essential for reproduction (Irwin & Lee, 2003). [Figure 5 here] If responses to climate change improve pre-winter condition, winter performance may be enhanced. For example sub-alpine yellow-bellied marmots have advanced their phenology in response to recent climate change, which allows increased resource accumulation and growth and, consequently, increased overwinter survival and population growth rates (Ozgul et al., 2010). Presumably, such positive impacts of longer growing seasons will help to buffer negative impacts of winter climate change, although few data exist to address this hypothesis. However, some changes to growing season physiology may have negative effects on winter performance. For example, damselfly larvae that grow rapidly during the growing season do so at the expense of winter cold tolerance (Stoks & De Block, 2011), although this trade-off was not apparent in butterflies (Karl et al., 2013), underlining the likelihood that the relationship between summer and winter will be complex and species-specific. In Figure 5, we conceptualise the potential biological impacts of winter climate change on a species in an inter-seasonal context. We assume that reproduction and growth occur outside of winter – modification will be necessary for species that reproduce in winter. In Figure 5, the

winter variables that affect an organism are represented by 'Winter', while 'Mortality',

653 'Resources' and 'Sub-lethal damage' represent the outcomes of the biological processes and
654 stresses in Figure 3. Figure 5 can be used in two ways. First, it can be used in conjunction with
655 our framework describing the impacts of winter on a species' biology (Figure 3, Table 1) to

identify areas in which further research is required. Second, by determining the causal links and
strengths of the relationships shown, it can be used to determine the relative importance of
different aspects of winter in determining how a species' vulnerability to overwinter conditions
plays out in the growing season and affects fitness.

The relationships between post-winter condition, growing season performance (and reproduction) and pre-winter condition are already known for many species, thanks to the preponderance of growing-season studies. Winter mortality has been well-explored for many species (Aars & Ims, 2002; Hodges et al., 2006; Roland & Matter, 2013; Stahl et al., 2006), but data are lacking regarding the sub-lethal impacts of winter, mediated through resource consumption and damage, and the effects of these sub-lethal impacts on growing season performance. Moving forward, the direct relationships between winter conditions and growing season performance need to be explored further across many taxa (see Kreyling (2010) for a plant-focused discussion of this point), as does the extent to which vulnerability to summer changes may exacerbate or negate vulnerability to winter changes.

V. Scaling up to populations, communities, and ecosystems

The direct effects of winter climate change on individual organisms will combine and synergise with competitive interactions to influence demography. Positive impacts of winter climate change, in the form of decreases in winter mortality, may be balanced or cancelled out by a corresponding increase in intra-specific competition. For example, early snow-melt and increased availability of forage decreased overwinter mortality in reindeer, which increased competition and slowed population growth (Tyler, Forchhammer & Øritsland, 2008). Winter climate change can affect population dynamics both directly and indirectly via different Page 31 of 76

Biological Reviews

mechanisms. For example, in an alpine butterfly, delayed snow melt directly increased population growth by increasing recruitment the subsequent year, and indirectly increased population growth by increasing the peak abundance of the butterfly's floral resources (Boggs & Inouve, 2012). Climate change-related shifts in population densities and processes at the leading and retracting range edges (Hill, Griffiths & Thomas, 2011) lead to well-documented poleward range shifts, especially in butterflies (Chen et al., 2011b; Hill et al., 2002; Parmesan et al., 1999). In some cases, climate-driven range shifts have been directly attributed to changes in winter climate (Berger et al., 2007; Crozier, 2004). Conversely, differential susceptibility to winter climate change among populations could also reduce performance in peripheral populations (Pelini et al., 2009), leading to range contractions in some species.

At community scales, complex multi-trophic interactions can drive the effects of climate change on individual species. Alterations to the abundance of plants or animals as a result of changes in mortality or phenology can be propagated through communities via consumer-resource interactions. For example, in a deciduous forest, increased winter herbivory by elk as a result of decreased snow cover depresses plant and associated bird communities throughout the year (Martin & Maron, 2012). A deeper snow pack in the Great Lakes region of the USA increases hunting success of wolves leading to reduced moose populations, which releases fir trees from heavy browsing and increases the fir understory (Post et al., 1999). In turn, these changes in understory composition and browsing could depress soil respiration rates (Persson et al., 2009). Community interactions can modify and even reverse the effects of climate change on individual species. For example, winter-induced changes in herbivory can prevent shrub expansion in Arctic tundra (Olofsson et al., 2009). In ecosystems where predator populations are subject to bottom-up control due to resource limitation, negative effects of winter climate change

on prey may extend to higher trophic levels. Winter climate change has decreased plant production and forage quality, leading to declines in herbivore fitness (Awmack & Leather, 2002; Bokhorst et al., 2012b), and the collapse of Arctic lemming population cycles has decreased the population growth of several predator species (Gilg, Sittler & Hanski, 2009; Schmidt et al., 2012). Conversely, direct impacts of winter climate change on overwintering carnivores may lessen predation pressure on prey species, with community-wide consequences (Estes et al., 2011), although few examples of such climate-induced trophic cascades in a winter context – perhaps because such studies have focused on Arctic and boreal habitats. These multi-trophic interactions make it imperative to predict the direct impacts of winter climate change on species that exert strong top-down or bottom-up control within their communities, perhaps aiding to identify focal species for winter study.

As we have shown, winter affects different species in different ways. Thus, dissimilar responses to winter climate change by different species can exacerbate phenological mismatches, reconfiguring community interactions (Van der Putten, Macel & Visser, 2010). For example, winter climate change has led to earlier spring leaf-out and caterpillar emergence in European oak forests, decreasing synchrony of (caterpillar) food supply with peak feeding times in passerine birds (Both et al., 2009). Similarly, the plant growing season has advanced faster than the timing of the caribou migration to Arctic breeding grounds, resulting in increasing calf mortality and lower calf production (Post & Forchhammer, 2008). By contrast, climate change has actually improved host plant-herbivore synchrony in a sub-Arctic moth-birch system. Previously, birch bud burst occurred too early for moth larvae to feed on young (palatable) leaves. However, moth phenology has advanced more rapidly than birch in response to shorter winters, which has improved synchrony and enabled moth larvae to exploit this new resource

Page 33 of 76

1

Biological Reviews

2	
4	
5 6	
7	
8	
9 10	
11	
12 13	
14	
16	
23456789101121314151617	
18 19	
20	
21 22	
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	
25	
26 27	
28	
29 30	
31	
32 33	
34	
35 36	
37 38 39	
38 39	
40 41	
42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
55	
56 57	
58	
59 60	

(Jepsen et al., 2011). In extreme cases such as irruptive outbreaks of the (winter-limited)
mountain pine beetle, winter climate change has contributed to altering landscape-level
processes: beetle infestation modifies tree survival and species composition, ultimately
converting forests in British Columbia from net carbon sinks to a source of carbon (Kurz et al.,
2008).

730 The links addressed in Figure 5 can be extended to processes that occur at the community or ecosystem scale. In doing so, additional links must be added to account for species 731 732 interactions such as competition, and ecosystem processes that determine seasonal changes in 733 resource availability. For example, Figure 6 (based on Sturm et al., 2005) describes potential feedbacks between changes in snow cover, nutrient availability and plant species composition in 734 735 the Arctic. In this scenario, climate warming is expected to promote shrub expansion into 736 graminoid communities, increasing the trapping of snow. Increased depth and duration of the snowpack can then increase nitrogen availability over winter by increasing soil microbial 737 738 activity, and because the shrub canopy is above the snow layer, bud-burst and photosynthesis can occur earlier than in the low-statured graminoids, allowing the shrubs to access late-winter 739 740 nitrogen pulses. Decreased nitrogen availability over summer, enhanced by increases in low 741 quality, woody shrub litter, coupled with increased shading by shrubs, further reduce the competitive abilities of the graminoids. In contrast to the latter example, extremely low spring 742 743 snow accumulation is projected to occur over much of the Northern Hemisphere, with >80 % of 744 years below the baseline minimum in some areas by 2080–2099 (Diffenbaugh & Field, 2013). The resulting decreases in melt water in spring, coupled with increased evapotranspiration and 745 746 decreased summer rainfall in some regions, will increase summer drought severity.

As we have demonstrated in this section, understanding the interactions between climate and biotic processes is essential for predicting how ecosystems will respond to climatic warming (Blois et al., 2013). Moving forward, integrating the responses of organisms across entire ecosystems, while taking into account linkages between winter and summer responses to climate change, and differing capacity to evolve, is a daunting task. This task will be facilitated by *a priori* identification of the key vulnerabilities to winter climate change, a process which is described in the following section.

VI. Predicting vulnerability to winter climate change

It is clear that winter is an important driver of biological processes and organismal fitness, and that winter climate change has the potential to significantly impact individuals, populations, community interactions and ecosystem processes. However, if a goal of global change research is to offer predictive power to facilitate risk assessments and management decisions, then it is necessary to identify which species and processes will be vulnerable to changing winters.

Williams et al. (2008) proposed an integrative framework to identify and prioritise species that are vulnerable to climate change, where vulnerability was defined as susceptibility of a system to change – in most of our cases, the primary 'system' we consider is an individual or population. The authors distinguished between factors determining exposure to a change in climate, and those determining sensitivity to those changes. In their framework, exposure was determined by the degree of regional climate change, filtered through microclimatic buffering due to habitat choice. For example, if temperatures are rising, a species that does not have the capacity to change microhabitat choice or alter thermoregulatory behaviour will be exposed to an increase in temperature, whereas a species that can buffer these regional changes will not

(Kearney, Shine & Porter, 2009). In the context of winter, the three primary drivers of changing snow cover, thermal variability, and shifts in mean temperature interact with overwintering biology to modify the stresses that will be experienced: thus we must understand the causal relationships between the drivers that determine exposure to winter climate change. Figure 3 can be used as a framework for determining exposure to stress resulting from winter climate change, although such predictions are still dependent on predicting changes in the drivers from climate data and models – a major challenge given the discrepancy between the size of organisms and the scale at which climate data are collected (Potter, Woods & Pincebourde, 2013), and the lack of information about the timeframes over which selection will modify winter phenology and physiology. Assuming that we can accurately assess an organism's exposure to climate change, the

next step is to determine whether it will be sensitive (i.e. experience negative impacts). Williams et al. (2008) suggest that sensitivity is governed by intrinsic ecological, physiological or genetic traits of the focal species that determine levels of resilience (the ability of a species to survive and recover from a negative impact) and adaptive capacity (the capacity for plastic or evolutionary changes to reduce negative impacts). Related to the capacity for adaptation, we note that estimates of the strength of selection encountered by organisms in winter environments are an essential component of a predictive framework, but to date few studies have measured such selection gradients (Boratynski et al. (2010) provide one example of this). In using Figure 3 as a framework, it is possible not only to identify the potential exposure to stress resulting from changes in the drivers, but because it makes clear (some of) the causal links between the drivers and organismal fitness, it allows the identification of end traits – and the design of simple experiments – that facilitate an assessment of the susceptibility of organisms to changes in those

drivers. For example, there are clear links between overwintering temperature and energy consumption for many overwintering ectotherms. It is thus possible to design a simple experiment (e.g. keep overwintering stages of several species at several temperatures; Williams et al., 2012a) to compare susceptibility of energy use to changes in temperature. Similarly, experimental designs are now well established for determining impacts of repeated stress exposure (Marshall & Sinclair, 2012a), addressing the impacts of shifting variability or snow cover – although the results of such experiments are not necessarily easy to interpret. For example, repeated freezing in overwintering caterpillars saves energy (Marshall & Sinclair, 2012b) but has other sub-lethal impacts (Marshall & Sinclair, 2011). Thus, a reductionist approach can be used to identify or rule out susceptibility to certain drivers of climate change relatively rapidly, but more complex experiments are necessary to understand interactions among drivers.

More generally, it is possible to identify some of the general traits that render individuals or populations of a species vulnerable (or resilient) to winter climate change (Table 1). As with all sensitivity to climate change, species that have high rates of reproduction and short lifecycles, large range sizes (but not large spatial scales of operation), and high dispersal will be less vulnerable to change (Williams et al., 2008). However, the links in Figure 3 allow the identification of winter-specific traits that lead to vulnerability; some of these are outlined in Table 1, and are grouped according to energy balance (e.g. thermoregulatory strategy, metabolism), phenology (e.g. chilling requirements, overwintering stage), cold injury (e.g. cold tolerance, response to repeated stress), water balance and predation (e.g. trophic position, predatory avoidance strategies).

Page 37 of 76

Biological Reviews

Despite extensive evidence from individual cases for the importance of trophic dynamics in determining overwinter responses, they remain difficult to predict. Community-level experiments are inherently complex and limited in spatial and temporal scope, while the use of population-based data to construct dynamic models of communities is typically inadequate for predicting responses to novel combinations of drivers, even in the growing season (Abrams, 2001). This complexity is intensified when the relative performances of organisms both over summer and winter must be taken into account, but we propose that the species-based *a priori* approach, based on the drivers and vulnerabilities identified in Table 1 and Figure 3 can be used to identify key impacts of winter. If combined with an understanding of the community interactions in a system, it is possible to at least identify potential responses to winter climate change at the community level.

VII. A call to further integrate winter into climate change research

Winter imposes a severe selective pressure that determines fitness, drives many ecological processes, and shapes the evolution of organisms. The pressing need to understand the mechanisms underlying biological responses to climate change, coupled with the rapid changes in winter conditions, together provide a strong imperative to unravel the complexities of responses to winter at the individual, community, and ecosystem scales, and to determine general patterns describing vulnerability to negative impacts. To integrate this information we must combine theoretical and empirical approaches and synthesise across taxa, levels of organisation, and climate drivers.

For theorists, the challenge lies in incorporating winter into models that tend to have
forms and parameters associated with growth and assimilation, rather than dormancy and
consumption (although there is scope for the latter in Dynamic Energy Budget models; Sousa et

al., 2010). Mechanistic models of winter biology exist for some species, and the form of some of these models may be incorporated into existing frameworks, and potentially expanded to include additional aspects of winter climate change. For example, Régnière and Bentz (2007) have provided a robust model of the dynamic shifts in cold tolerance of overwintering mountain pine beetles, although this model does not incorporate any sub-lethal impacts of cold exposure. Because it is likely that the existing relationships between climate variables will be disrupted (Jackson et al., 2009; see also Figure 2), functional or phylogenetic approaches may be powerful alternatives to existing niche models (Buckley & Kingsolver, 2012) by using existing studies to infer potential impacts of combinations of winter drivers that may be novel for a given species or population. However, data regarding the effects of winter conditions on fitness is sparse and diffuse, and not necessarily in a model-ready format. Trait databases such as iPlant (Goff et al., 2011) may provide a source of such information, but theorists and empiricists will need to work together to identify the key traits that will inform vulnerability to winter climate change, using approaches similar to those outlined in Figure 3 and Table 1.

To inform this theoretical effort, empiricists need to collect more data on the performance and, ultimately, fitness consequences of projected changes in winter climate drivers. Such an understanding requires integration across levels of organisation and from regional to singleorganism scales; this entails a shift in focus to populations rather than species, metres rather than miles, and minutes rather than months. A lofty goal for mechanistic studies of overwintering biology is the development of general principles that describe how organisms respond to winter, and the ability to predict -a priori – which species will be most vulnerable to winter climate change. To accomplish this we must extend more laboratory studies into the field, which will require methodological limitations and biases to be overcome. For example, methods for

Page 39 of 76

Biological Reviews

simulating winter climate change in the field, such as snow fences, snow removal, heated soil cables and overhead heaters, are often plagued by artifacts or scaling limitations (Shen & Harte, 2000). Similarly, there is a need to expand the geographic and taxonomic focus of winter biology. There has been a disproportionate focus on relatively cold environments with long winters (such as the high arctic) relative to temperate systems (Kreyling, 2010), and there have also been asymmetries in research between the northern and southern hemispheres, which may also bias our understanding of the key aspects of winter (Chown et al., 2004). Throughout this review, it is apparent that the bulk of the literature on some broadly-applicable topics is constrained to certain systems; for example, many studies of winter climate change at the community and population levels have been conducted on arctic mammals, but few on temperate insects, whereas a disproportionate amount of research has been conducted on the physiological responses to freezing of temperate insects and crop plants. Finally, there is a need for substantial effort documenting fall and winter events complementing the successful and ongoing documentation of changes in spring phenology and growing season biology. We particularly encourage a concerted effort to expand existing, well-characterised, systems into the winter to develop a more holistic view of how organisms, communities, and ecosystems will respond to climate change.

881 VIII. Conclusions

(1) Overwintering biology is a key component of the biology of organisms that live in temperate, polar and alpine habitats, and has driven the evolution of extreme phenotypes such as dormancy and migration.

Page 40 of 76

1		
2 3 4 5	885	(2) The main abiotic drivers of biological responses to winter are the mean and
6	886	variability of air temperatures and the extent and timing of snow cover. All of these
7 8 9	887	are being affected by climate change in a regionally-specific manner.
10 11	888	(3) Understanding the links between abiotic change and organismal performance is
12 13	889	important for determining organismal vulnerability to climate change. This will
14 15 16	890	require a mechanistic and integrative approach.
16 17 18	891	(4) Responses to winter conditions are not isolated from growing season responses to
18 19 20	892	climate. Therefore it is important to investigate the impacts of winter on
21 22 23	893	performance, fitness and biotic interactions in the context of growing season biology.
24 25	894	We suggest that an opportunity exists to extend existing long-term studies of growing
26 27	895	season biology to incorporate the effects of winter.
28 29 30	896	(5) At the population and community levels, inter- and intra-specific interactions strongly
31 32	897	influence responses to winter climate change. Impacts on individual species will
33 34	898	propagate through ecosystems, and the role of winter in modifying these interactions
35 36	899	must be considered when predicting the ecological impacts of climate change.
37 38 39	900	
40 41	901	
42 43	901	IX. Acknowledgements
44 45	902	Thanks to Dan Hahn, Jessica Hellmann, Jack Millar, Katie Marshall, Mhairi McFarlane
45 46 47	903	and two anonymous referees for constructive criticism of earlier drafts of the ms, to Mary Power
48 49	904	for helpful discussions, and to Ken Miller, Heath MacMillan and Hiroko Udaka for assistance
50 51	905	with the figures.
52 53 54 55 56	906 907	X. References
57 58		
59 60		40

1 2		
3 4	908	AARS, J. & IMS, R. A. (2002). Intrinsic and climatic determinants of population demography: The
5 6 7	909	winter dynamics of tundra voles. <i>Ecology</i> 83 , 3449-3456.
8 9	910	ABRAMS, P. A. (2001). Describing and quantifying interspecific interactions: a commentary on
10 11 12	911	recent approaches. Oikos 94, 209-218.
13 14	912	ACIA. (2005). Arctic Climate Impact Assessment. Cambridge University Press, Cambridge.
15 16 17	913	ADDINGTON, R. N. & SEASTEDT, T. R. (1999). Activity of soil microarthropods beneath
17 18 19	914	snowpack in alpine tundra and subalpine forest. <i>Pedobiologia</i> 43 , 47-53.
20 21 22	915	ALERSTAM, T., HEDENSTROM, A. & AKESSON, S. (2003). Long-distance migration: evolution and
22 23 24	916	determinants. Oikos 103, 247-260.
25 26	917	AMASINO, R. (2004). Vernalization, competence, and the epigenetic memory of Winter. <i>Plant</i>
27 28 29	918	<i>Cell</i> 16 , 2553-2559.
29 30 31	919	ANGILLETTA, M. J. (2009). Thermal Adaptation. Oxford University Press, New York.
32 33	920	AUGSPURGER, C. K. (2009). Spring 2007 warmth and frost: phenology, damage and refoliation in
34 35 36	921	a temperate deciduous forest. Functional Ecology 23, 1031-1039.
37 38	922	AUGSPURGER, C. K. (2013). Reconstructing patterns of temperature, phenology, and frost
39 40	923	damage over 124 years: Spring damage risk is increasing. Ecology 94, 41-50.
41 42 43	924	AUKEMA, B. H., CARROLL, A. L., ZHENG, Y., ZHU, J., RAFFA, K. F., MOORE, R. D., STAHL, K. &
44 45	925	TAYLOR, S. W. (2008). Movement of outbreak populations of mountain pine beetle:
46 47	926	influences of spatiotemporal patterns and climate. <i>Ecography</i> 31 , 348-358.
48 49 50	927	AWMACK, C. S. & LEATHER, S. R. (2002). Host plant quality and fecundity in herbivorous
51 52 53 54	928	insects. Annual Review of Entomology 47, 817-844.
	929	BARBEITO, I., DAWES, M. A., RIXEN, C., SENN, J. & BEBI, P. (2012). Factors driving mortality
55 56 57 58	930	and growth at treeline: a 30-year experiment of 92 000 conifers. <i>Ecology</i> 93 , 389-401.
59 60		41

931	BATTISTI, A., STASTNY, M., NETHERER, S., ROBINET, C., SCHOPF, A., ROQUES, A. & LARSSON, S.
932	(2005). Expansion of geographic range in the pine processionary moth caused by
933	increased winter temperatures. Ecological Applications 15, 2084-2096.
934	BEN-HAMO, M., MUNOZ-GARCIA, A., WILLIAMS, J. B., KORINE, C. & PINSHOW, B. (2013).
935	Waking to drink: rates of evaporative water loss determine arousal frequency in
936	hibernating bats. Journal of Experimental Biology 216, 573-577.
937	BERGER, S., SOHLKE, G., WALTHER, G. R. & POTT, R. (2007). Bioclimatic limits and range shifts
938	of cold-hardy evergreen broad-leaved species at their northern distributional limit in
939	Europe. Phytocoenologia 37, 523-539.
940	BLOIS, J. L., ZARNETSKE, P. L., FITZPATRICK, M. C. & FINNEGAN, S. (2013). Climate Change and
941	the Past, Present, and Future of Biotic Interactions. Science 341, 499-504.
942	BOGGS, C. L. & FREEMAN, K. D. (2005). Larval food limitation in butterflies: effects on adult
943	resource allocation and fitness. <i>Oecologia</i> 144, 353-361.
944	BOGGS, C. L. & INOUYE, D. W. (2012). A single climate driver has direct and indirect effects on
945	insect population dynamics. Ecology Letters 15, 502-508.
946	BOKHORST, S., BJERKE, J. W., STREET, L. E., CALLAGHAN, T. V. & PHOENIX, G. K. (2011).
947	Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology,
948	
949	BOKHORST, S., PHOENIX, G. K., BJERKE, J. W., CALLAGHAN, T. V., HUYER-BRUGMAN, F. &
950	BERG, M. P. (2012a). Extreme winter warming events more negatively impact small
951	rather than large soil fauna: shift in community composition explained by traits not taxa.
952	Global Change Biology 18, 1152-1162.
	 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

r	CO ₂ flux responses. <i>Global Change Biology</i> 17 , 2817-2830.
e	
р	
r	
0	
d	
u	
c	
t	
i	
0	
n	
,	
g	
r	
0	
W	
t	
h 949	BOKHORST, S., PHOENIX, G. K., BJERKE, J. W., CALLAGHAN, T. V., HUYER-BRUGMAN, F. &
950	BERG, M. P. (2012a). Extreme winter warming events more negatively impact small
951	rather than large soil fauna: shift in community composition explained by traits not taxa.
95 ⁹ 2	Global Change Biology 18, 1152-1162.
n	
d	
	42

1 2		
2 3 4	953	BOKHORST, S., TOMMERVIK, H., CALLAGHAN, T. V., PHOENIX, G. K. & BJERKE, J. W. (2012b).
5 6 7	954	Vegetation recovery following extreme winter warming events in the sub-Arctic
7 8 9	955	estimated using NDVI from remote sensing and handheld passive proximal sensors.
10 11	956	Environmental and Experimental Botany 81, 18-25.
12 13	957	BONAN, G. B. (2003). Ecological Climatology. Cambridge University Press, Cambridge.
14 15 16	958	BORATYNSKI, Z., KOSKELA, E., MAPPES, T. & OKSANEN, T. A. (2010). Sex-specific selection on
16 17 18	959	energy metabolism - selection coefficients for winter survival. Journal of Evolutionary
18 19 20	960	<i>Biology</i> 23 , 1969-1978.
21 22 23	961	BOTH, C., VAN ASCH, M., BIJLSMA, R. G., VAN DEN BURG, A. B. & VISSER, M. E. (2009). Climate
23 24 25	962	change and unequal phenological changes across four trophic levels: constraints or
26 27	963	adaptations? Journal of Animal Ecology 78, 73-83.
28 29 30	964	BRADSHAW, W. E. & HOLZAPFEL, C. M. (2001). Genetic shift in photoperiodic response
31 32	965	correlated with global warming. Proceedings of the National Academy of Sciences of the
33 34 35	966	United States of America 98, 14509-14511.
36	967	BREED, G. A., STICHTER, S. & CRONE, E. E. (2013). Climate-driven changes in northeastern US
37 38 39	968	butterfly communities. <i>Nature Climate Change</i> 3 , 142-145.
40 41 42	969	BRODIE, J. F. & POST, E. (2010). Nonlinear responses of wolverine populations to declining
42 43 44	970	winter snowpack. Population Ecology 52, 279-287.
44 45 46	971	BROWN, P. J. & DEGAETANO, A. T. (2011). A paradox of cooling winter soil surface
47 48 49	972	temperatures in a warming northeastern United States. Agricultural and Forest
50 51 52	973	<i>Meteorology</i> 151, 947-956.
53 54		
55		
56 57		
58 59		

4	9
5 6 7	9
8 9	9
10	9
11 12 13	9
14 15 16 17	9
17 18 19	9
20	9
21 22 23	9
23 24 25	9
26 27 28	9
28 29 30	9
31	9
32 33 34	9
35 36	9
37 38 39	9
40 41	9
42 43	0
44 45 46	9
40 47 48	9
49 50	9
51 52	9
53 54 55	9
56 57	
58 59	
60	

1 2 3

974	BUCKLEY, L. B. & KINGSOLVER, J. G. (2012). Functional and Phylogenetic Approaches to
975	Forecasting Species' Responses to Climate Change. Annual Review of Ecology,
976	Evolution, and Systematics 43, 205-226.
977	BYKOVA, O. & SAGE, R. F. (2012). Winter cold tolerance and the geographic range separation of
978	Bromus tectorum and Bromus rubens, two severe invasive species in North America.
979	<i>Global Change Biology</i> 2012, 3654-3663.
980	CALLAGHAN, T. V., BJORN, L. O., CHERNOV, Y., CHAPIN, T., CHRISTENSEN, T. R., HUNTLEY, B.,

- 981 IMS, R. A., JOHANSSON, M., JOLLY, D., JONASSON, S., MATVEYEVA, N., PANIKOV, N.,
- 982 OECHEL, W., SHAVER, G. & HENTTONEN, H. (2004). Effects on the structure of arctic
 983 ecosystems in the short- and long-term perspectives. *AMBIO* 33, 436-447.
- 984 CAPRIO, J. M., QUAMME, H. A. & REDMOND, K. T. (2009). A statistical procedure to determine
 985 recent climate change of extreme daily meteorological data as applied at two locations in
 986 Northwestern North America. *Climatic Change* 92, 65-81.
- 987 CHEN, I. C., HILL, J. K., OHLEMULLER, R., ROY, D. B. & THOMAS, C. D. (2011a). Rapid Range
 988 Shifts of Species Associated with High Levels of Climate Warming. *Science* 333, 1024989 1026.
 - 990 CHEN, I. C., HILL, J. K., SHIU, H. J., HOLLOWAY, J. D., BENEDICK, S., CHEY, V. K., BARLOW, H.
 991 S. & THOMAS, C. D. (2011b). Asymmetric boundary shifts of tropical montane
 992 Lepidoptera over four decades of climate warming. *Global Ecology and Biogeography*
 - **20,** 34-45.
 - CHOWN, S. L., SINCLAIR, B. J., LEINAAS, H. P. & GASTON, K. J. (2004). Hemispheric
 asymmetries in biodiversity A serious matter for ecology. *PLoS Biology* 2, e406.

1 2 3		
4	996	CHOWN, S. L., SLABBER, S., MCGEOCH, M. A., JANION, C. & LEINAAS, H. P. (2007). Phenotypic
5 6 7	997	plasticity mediates climate change responses among invasive and indigenous arthropods.
, 8 9	998	Proceedings of the Royal Society B 274, 2531-2537.
10 11	999	COOK, B. I., WOLKOVICH, E. M. & PARMESAN, C. (2012). Divergent responses to spring and
12 13	1000	winter warming drive community level flowering trends. Proceedings of the National
14 15 16	1001	Academy of Sciences of the United States of America 109 , 9000-9005.
17 18 19	1002	COULSON, S. J., LEINAAS, H. P., IMS, R. A. & SØVIK, G. (2000). Experimental manipulation of
20	1003	the winter surface ice layer: the effects on a High Arctic soil microarthropod community.
21 22 23	1004	<i>Ecography</i> 23 , 299-306.
24 25	1005	CROZIER, L. (2004). Warmer winters drive butterfly range expansion by increasing survivorship.
26 27 28	1006	<i>Ecology</i> 85 , 231-241.
28 29 30	1007	DALY, C., WIDRLECHNER, M. P., HALBLEIB, M. D., SMITH, J. I. & GIBSON, W. P. (2012).
31 32	1008	Development of a New USDA Plant Hardiness Zone Map for the United States. Journal
33 34 35 36	1009	of Applied Meteorology and Climatology 51 , 242-264.
36 37 38	1010	DECKER, K. L. M., WANG, D., WAITE, C. & SCHERBATSKOY, T. (2003). Snow removal and
38 39 40	1011	ambient air temperature effects on forest soil temperatures in Northern Vermont. Soil
41 42	1012	Science Society of America Journal 67, 1234-1242.
43 44	1013	DEERE, J. A. & CHOWN, S. L. (2006). Testing the beneficial acclimation hypothesis and its
45 46 47 48 49 50 51	1014	alternatives for locomotor performance. American Naturalist 168, 630-644.
	1015	DESER, C., TOMAS, R., ALEXANDER, M. & LAWRENCE, D. (2010). The Seasonal Atmospheric
	1016	Response to Projected Arctic Sea Ice Loss in the Late Twenty-First Century. Journal of
52 53 54 55 56 57 58 59 60	1017	<i>Climate</i> 23, 333-351. 45

1 2 3	1010	
4 5	1018	DIAMOND, S. E., FRAME, A. M., MARTIN, R. A. & BUCKLEY, L. B. (2011). Species' traits predict
6 7	1019	phenological responses to climate change in butterflies. <i>Ecology Letters</i> 92 , 1005-1012.
7 8 9	1020	DIFFENBAUGH, N. S. & FIELD, C. B. (2013). Changes in Ecologically Critical Terrestrial Climate
10 11	1021	Conditions. <i>Science</i> 341 , 486-492.
12 13 14	1022	DIONNE, J., CASTONGUAY, Y., NADEAU, P. & DESJARDINS, Y. (2001). Freezing tolerance and
15 16 17	1023	carbohydrate changes during cold acclimation of green-type annual bluegrass (Poa annua
17 18 19	1024	L.) ecotypes. Crop Science 41, 443-451.
20 21	1025	DURÁN, J., RODRÍGUEZ, A., MORSE, J. L. & GROFFMAN, P. M. (2013). Winter climate change
22 23	1026	effects on soil C and N cycles in urban grasslands. Global Change Biology 19, 2826-
24 25 26	1027	2837.
27	1028	EASTERLING, D. R., MEEHL, G. A., PARMESAN, C., CHANGNON, S. A., KARL, T. R. & MEARNS, L.
28 29 30	1029	O. (2000). Climate extremes: Observations, modeling, and impacts. Science 289, 2068-
31 32 33	1030	2074.
34 35 36	1031	ENSMINGER, I., BUSCH, F. & HÜNER, N. P. A. (2006). Photostasis and cold acclimation: sensing
37 38	1032	low temperature through photosynthesis. Physiologia Plantarum 126, 28-44.
30 39 40	1033	ESTES, J. A., TERBORGH, J., BRASHARES, J. S., POWER, M. E., BERGER, J., BOND, W. J.,
41 42 43	1034	CARPENTER, S. R., ESSINGTON, T. E., HOLT, R. D., JACKSON, J. B. C., MARQUIS, R. J.,
43 44 45	1035	OKSANEN, L., OKSANEN, T., PAINE, R. T., PIKITCH, E. K., RIPPLE, W. J., SANDIN, S. A.,
46 47	1036	Scheffer, M., Schoener, T. W., Shurin, J. B., Sinclair, A. R. E., Soule, M. E.,
48 49	1037	VIRTANEN, R. & WARDLE, D. A. (2011). Trophic Downgrading of Planet Earth. Science
50 51 52 53 54 55 56 57 58 59	1038	333, 301-306.
60		46

1 2 3		
3 4 5 6 7 8 9 10 11 12 13 14	1039	FEDER, J. L., HUNT, T. A. & BUSH, G. L. (1993). The effects of climate, host-plant phenology and
	1040	host fidelity on the genetics of apple and hawthorn infesting races of <i>Rhagoletis</i>
	1041	pomonella. Entomologia Experimentalis Et Applicata 69, 117-135.
	1042	FODEN, W. B., BUTCHART, S. H. M., STUART, S. N., VIE, J. C., AKCAKAYA, H. R., ANGULO, A.,
	1043	DEVANTIER, L. M., GUTSCHE, A., TURAK, E., CAO, L., DONNER, S. D., KATARIYA, V.,
15	1044	BERNARD, R., HOLLAND, R. A., HUGHES, A. F., O'HANLON, S. E., GARNETT, S. T.,
16 17 18 19 20 21	1045	SEKERCIOGLU, C. H. & MACE, G. M. (2013). Identifying the World's Most Climate
	1046	Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds,
21 22 23	1047	Amphibians and Corals. <i>Plos One</i> 8 , 13.
24 25 26 27	1048	FORREST, J. R. K. & THOMSON, J. D. (2011). An examination of synchrony between insect
	1049	emergence and flowering in Rocky Mountain meadows. Ecological Monographs 81, 469-
28 29 30	1050	491.
31 32	1051	FOX, L. R., RIBEIRO, S. P., BROWN, V. K., MASTERS, G. J. & CLARKE, I. P. (1999). Direct and
33 34 35	1052	indirect effects of climate change on St John's wort, Hypericum perforatum L.
35 36 37 38 39 40	1053	(Hypericaceae). Oecologia 120, 113-122.
	1054	FRIDLEY, J. D. (2012). Extended leaf phenology and the autumn niche in deciduous forest
41 42	1055	invasions. <i>Nature</i> 485 , 359-362.
43 44	1056	FULLER, T. K. (1991). Effect of snow depth on wolf activity and prey selection in north-central
45 46 47 48 49 50 51 52 53 54	1057	Minnesota. Canadian Journal of Zoology 69, 283-287.
	1058	GAINES, S. D. & DENNY, M. W. (1993). The Largest, Smallest, Highest, Lowest, Longest, and
	1059	Shortest: Extremes in Ecology. Ecology 74, 1677-1692.
	1060	GENTLE, L. K. & GOSLER, A. G. (2001). Fat reserves and perceived predation risk in the great tit,
55 56 57 58 59 60	1061	Parus major. Proceedings of the Royal Society of London B 268 , 487-491.

1 2 3	1062	GILG, O., KOVACS, K. M., AARS, J., FORT, J., GAUTHIER, G., GREMILLET, D., IMS, R. A.,
4 5		GLO, O., KOVACS, K. WI., MARS, J., FORT, J., CAUTILLA, O., ORLWILLET, D., IWS, R. M.,
6 7	1063	Meltofte, H., Moreau, J., Post, E., Schmidt, N. M., Yannic, G. & Bollache, L.
, 8 9	1064	(2012). Climate change and the ecology and evolution of Arctic vertebrates. Annals of the
10 11	1065	New York Academy of Sciences 1249 , 166-190.
12 13	1066	GILG, O., SITTLER, B. & HANSKI, I. (2009). Climate change and cyclic predator-prey population
14 15 16 17	1067	dynamics in the high Arctic. Global Change Biology 15, 2634-2652.
17 18 19	1068	GOFF, S. A., VAUGHN, M., MCKAY, S., LYONS, E., STAPLETON, A. E., GESSLER, D., MATASCI, N.,
20	1069	WANG, L., HANLON, M., LENARDS, A., MUIR, A., MERCHANT, N., LOWRY, S., MOCK, S.,
21 22 23	1070	HELMKE, M., KUBACH, A., NARRO, M., HOPKINS, N., MICKLOS, D., HILGERT, U.,
24 25	1071	Gonzales, M., Jordan, C., Skidmore, E., Dooley, R., Cazes, J., McLay, R., Lu, Z.,
26 27 28	1072	PASTERNAK, S., KOESTERKE, L., PIEL, W. H., GRENE, R., NOUTSOS, C., GENDLER, K.,
28 29 30	1073	Feng, X., Tang, C., Lent, M., Kim, SJ., Kvilekval, K., Manjunath, B. S., Tannen,
31 32	1074	V., Stamatakis, A., Sanderson, M., Welch, S. M., Cranston, K., Soltis, P., Soltis,
33 34 35	1075	D., O'MEARA, B., ANE, C., BRUTNELL, T., KLEIBENSTEIN, D. J., WHITE, J. W., LEEBENS-
36 37 38	1076	MACK, J., DONOGHUE, M. J., SPALDING, E. P., VISION, T. J., MYERS, C. R., LOWENTHAL,
38 39 40	1077	D., ENQUIST, B. J., BOYLE, B., AKOGLU, A., ANDREWS, G., RAM, S., WARE, D., STEIN, L.
41 42	1078	& STANZIONE, D. (2011). The iPlant Collaborative: Cyberinfrastructure for Plant
43 44	1079	Biology. Frontiers in Plant Science 2.
45 46 47	1080	GOTTHARD, K., NYLIN, S. & WIKLUND, C. (1999). Seasonal plasticity in two satyrine butterflies:
48 49	1081	state-dependent decision making in relation to daylength. Oikos 84, 453-462.
50 51	1082	GOTTHARD, K., NYLIN, S. & WIKLUND, C. (2000). Individual state controls temperature
52 53 54	1083	dependence in a butterfly (Lasiommata maera). Proceedings of the Royal Society of
55 56 57 58 59	1084	London B 267 , 589-593.
60		48

1 2 3		
4	1085	GROFFMAN, P. M., DRISCOLL, C. T., FAHEY, T. J., HARDY, J. P., FITZHUGH, R. D. & TIERNEY, G.
5 6 7 8 9 10 11 12 13 14	1086	L. (2001). Colder soils in a warmer world: A snow manipulation study in a northern
	1087	hardwood forest ecosystem. Biogeochemistry 56, 135-150.
	1088	GU, L., HANSON, P. J., MAC POST, W., KAISER, D. P., YANG, B., NEMANI, R., PALLARDY, S. G. &
	1089	MEYERS, T. (2008). The 2007 eastern US spring freezes: Increased cold damage in a
14 15 16 17	1090	warming world? Bioscience 58, 253-262.
17 18 19	1091	GUERRA, P. A. & REPPERT, S. M. (2013). Coldness triggers northward flight in remigrant
20	1092	monarch butterflies. Current Biology 23, 419-423.
21 22 23 24	1093	GUILLEMAIN, M., ELMBERG, J., ARZEL, C., JOHNSON, A. R. & SIMON, G. (2008). The income-
25	1094	capital breeding dichotomy revisited: late winter body condition is related to breeding
26 27 28	1095	success in an income breeder. <i>Ibis</i> 150, 172-176.
28 29 30	1096	HAHN, D. A. & DENLINGER, D. L. (2011). Energetics of Insect Diapause. Annual Review of
31 32 33	1097	Entomology 56 , 103-121.
33 34 35 36	1098	HANSEN, B. B., AANES, R., HERFINDAL, I., KOHLER, J. & SAETHER, B. E. (2011). Climate, icing,
36 37 38	1099	and wild arctic reindeer: past relationships and future prospects. Ecology 92, 1917-1923.
30 39 40	1100	HENRY, H. A. L. (2008). Climate change and soil freezing dynamics: historical trends and
41 42 43	1101	projected changes. <i>Climatic Change</i> 87, 421-434.
43 44 45	1102	HILL, J. K., GRIFFITHS, H. M. & THOMAS, C. D. (2011). Climate Change and Evolutionary
46 47 48 49 50 51	1103	Adaptations at Species' Range Margins. Annual Review of Entomology 56, 143-159.
	1104	HILL, J. K., THOMAS, C. D., FOX, R., TELFER, M. G., WILLIS, S. G., ASHER, J. & HUNTLEY, B.
	1105	(2002). Responses of butterflies to twentieth century climate warming: implications for
52 53 54 55 56 57 58 59	1106	future ranges. Proceedings of the Royal Society of London B 269, 2163-2171.
59 60		49

1 2 3		
3 4 5	1107	HODGES, K. E., BOONSTRA, R. & KREBS, C. J. (2006). Overwinter mass loss of snowshoe hares in
6 7	1108	the Yukon: starvation, stress, adaptation or artefact? <i>Journal of Animal Ecology</i> 75 , 1-13.
8 9	1109	HØYE, T. T., POST, E., MELTOFTE, H., SCHMIDT, N. M. & FORCHHAMMER, M. C. (2007). Rapid
10 11	1110	advancement of spring in the High Arctic. Current Biology 17, R449-R451.
12 13 14	1111	Høye, T. T., Post, E., Schmidt, N. M., Trøjelsgaard, K. & Forchhammer, M. C. (2013).
15 16 17	1112	Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic.
17 18 19	1113	Nature Clim. Change 3, 759-763.
20	1114	HUFKENS, K., FRIEDL, M. A., KEENAN, T. F., SONNENTAG, O., BAILEY, A., O'KEEFE, J. &
21 22 23 24	1115	RICHARDSON, A. D. (2012). Ecological impacts of a widespread frost event following
25	1116	early spring leaf-out. Global Change Biology 18, 2365-2377.
26 27 28	1117	HUMPHRIES, M. M., THOMAS, D. W. & SPEAKMAN, J. R. (2002). Climate-mediated energetic
28 29 30	1118	constraints on the distribution of hibernating mammals. Nature 418, 313-316.
31 32	1119	INOUYE, D. W. (2008). Effects of climate change on phenology, frost damage, and floral
33 34 35	1120	abundance of montane wildflowers. <i>Ecology</i> 89 , 353-362.
36 37	1121	INOUYE, D. W., BARR, B., ARMITAGE, K. B. & INOUYE, B. D. (2000). Climate change is affecting
38 39 40	1122	altitudinal migrants and hibernating species. Proceedings of the National Academy of
40 41 42 43	1123	Sciences of the United States of America 97 , 1630-1633.
43 44 45	1124	IPCC. (2007). Climate Change 2007: Synthesis report. Intergovernmental Panel on Climate
45 46 47	1125	Change, Geneva.
48 49	1126	IRWIN, J. T. & LEE, R. E. (2003). Cold winter microenvironments conserve energy and improve
50 51	1127	overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta
52 53 54 55 56 57 58 59	1128	solidaginis. Oikos 100, 71-78.
60		50

1 2 3			
4	1129	JACKSON, S. T., BETANCOURT, J. L., BOOTH, R. K. & GRAY, S. T. (2009). Ecology and the ratel	het
5 6 7	1130	of events: Climate variability, niche dimensions, and species distributions. Proceedings	
8 9	1131	of the National Academy of Sciences of the United States of America 106 , 19685-19692.	
10 11	1132	JEONG, S. J., HO, C. H., GIM, H. J. & BROWN, M. E. (2011). Phenology shifts at start vs. end of	
12 13 14	1133	growing season in temperate vegetation over the Northern Hemisphere for the period	
15 16 17	1134	1982-2008. Global Change Biology 17, 2385-2399.	
17 18 19	1135	JEPSEN, J. U., KAPARI, L., HAGEN, S. B., SCHOTT, T., VINDSTAD, O. P. L., NILSSEN, A. C. & IM	lS,
20	1136	R. A. (2011). Rapid northwards expansion of a forest insect pest attributed to spring	
21 22 23 24	1137	phenology matching with sub-Arctic birch. Global Change Biology 17, 2071-2083.	
25	1138	JIGUET, F., GADOT, A. S., JULLIARD, R., NEWSON, S. E. & COUVET, D. (2007). Climate envelop	æ,
26 27 28	1139	life history traits and the resilience of birds facing global change. Global Change Biolog	;y
28 29 30	1140	13, 1672-1684.	
31 32 33	1141	JOSHI, A., OLSON, D. L. & CAREY, D. R. (2009). Overwintering Survival of Aphthona Beetles	
34 35 36	1142	(Coleoptera: Chrysomelidae): A Biological Control Agent of Leafy Spurge Released in	
36 37 38	1143	North Dakota. Environmental Entomology 38, 1539-1545.	
38 39 40	1144	KANDA, L. L. (2005). Winter energetics of Virginia opossums Didelphis virginiana and	
41 42	1145	implications for the species' northern distributional limit. <i>Ecography</i> 28, 731-744.	
43 44 45	1146	KARL, I., STOKS, R., BAUERFEIND, S. S., DIERKS, A., FRANKE, K. & FISCHER, K. (2013). No	
45 46 47	1147	Trade-Off between Growth Rate and Temperature Stress Resistance in Four Insect	
48 49	1148	Species. <i>PLoS ONE</i> 8 , e62434.	
50 51 52	1149	KAUSRUD, K. L., MYSTERUD, A., STEEN, H., VIK, J. O., OSTBYE, E., CAZELLES, B., FRAMSTAD,	
52 53 54	1150	E., EIKESET, A. M., MYSTERUD, I., SOLHOY, T. & STENSETH, N. C. (2008). Linking	
55 56 57 58 59	1151	climate change to lemming cycles. <i>Nature</i> 456 , 93-U3.	
60			51

1 2 3	1152	KEARNEY, M., SHINE, R. & PORTER, W. P. (2009). The potential for behavioral thermoregulation	n
4 5 6	1153	to buffer "cold-blooded" animals against climate warming. Proceedings of the National	
7 8 9	1154	Academy of Sciences of the United States of America 106, 3835-3840.	
10 11 12	1155	KLOK, C. J., CHOWN, S. L. & GASTON, K. J. (2003). The geographical range structure of the	
12 13 14	1156	Holly Leaf-miner. III. Cold hardiness physiology. Functional Ecology 17, 858-868.	
14 15 16 17	1157	KORSLUND, L. & STEEN, H. (2006). Small rodent winter survival: snow conditions limit access t	ίΟ
17 18 19	1158	food resources. Journal of Animal Ecology 75, 156-166.	
20	1159	KREYLING, J. (2010). Winter climate change: a critical factor for temperate vegetation	
21 22 23	1160	performance. Ecology 91, 1939-1948.	
24 25	1161	KREYLING, J. & HENRY, H. A. L. (2011). Vanishing winters in Germany: soil frost dynamics and	d
26 27 28	1162	snow cover trends, and ecological implications. Climate Research 46, 269-276.	
28 29 30	1163	KREYLING, J., JENTSCH, A. & BEIERKUHNLEIN, C. (2011). Stochastic trajectories of succession	
31 32	1164	initiated by extreme climatic events. Ecology Letters 14, 758-764.	
33 34 35 36	1165	KUNKEL, K. E., EASTERLING, D. R., HUBBARD, K. & REDMOND, K. (2004). Temporal variations	
36 37 38	1166	in frost-free season in the United States: 1895–2000. Geophysical Research Letters 31,	
38 39 40	1167	L03201.	
40 41 42	1168	KURIAN, L. M., LAUTZ, L. K. & MITCHELL, M. J. (2013). Winter Hydrology and NO3-	
43 44 45	1169	Concentrations in a Forested Watershed: A Detailed Field Study in the Adirondack	
45 46 47 48 49	1170	Mountains of New York. Journal of the American Water Resources Association 49, 264-	-
	1171	283.	
50 51	1172	KURZ, W. A., DYMOND, C. C., STINSON, G., RAMPLEY, G. J., NEILSON, E. T., CARROLL, A. L.,	
52 53 54	1173	EBATA, T. & SAFRANYIK, L. (2008). Mountain pine beetle and forest carbon feedback to	
55 56 57 58	1174	climate change. <i>Nature</i> 452 , 987-990.	
59 60		5	52

1 2		
2 3 4	1175	LANE, J. E., KRUUK, L. E., CHARMANTIER, A., MURIE, J. O. & DOBSON, F. S. (2012). Delayed
5 6 7	1176	phenology and reduced fitness associated with climate change in a wild hibernator.
8 9	1177	<i>Nature</i> 489 , 554-7.
10 11	1178	LEATHER, S. R., WALTERS, K. F. A. & BALE, J. S. (1993). The Ecology of Insect Overwintering.
12 13 14	1179	Cambridge University Press, Cambridge.
14 15 16 17	1180	LIU, X. D., YIN, Z. Y., SHAO, X. M. & QIN, N. S. (2006). Temporal trends and variability of daily
17 18 19	1181	maximum and minimum, extreme temperature events, and growing season length over
20	1182	the eastern and central Tibetan Plateau during 1961-2003. Journal of Geophysical
21 22 23 24	1183	Research-Atmospheres 111, D19109
25	1184	Lowe. (2005). IPCC DDC AR4 UKMO-HadCM3 SRESA2 run1. CERA-DB
26 27 28	1185	"UKMO_HadCM3_SRESA2_1"
28 29 30	1186	LUEDELING, E., GIRVETZ, E. H., SEMENOV, M. A. & BROWN, P. H. (2011). Climate Change
31 32	1187	Affects Winter Chill for Temperate Fruit and Nut Trees. PLoS One 6, e20155.
33 34 35	1188	MARGESIN, R., NEUNER, G. & STOREY, K. B. (2007). Cold-loving microbes, plants, and animals-
35 36 37 38	1189	fundamental and applied aspects. Naturwissenschaften 94, 77-99.
38 39 40	1190	MARSHALL, K. E. & SINCLAIR, B. J. (2010). Repeated stress exposure results in a survival-
41 42	1191	reproduction trade-off in Drosophila melanogaster. Proceedings of the Royal Society B
43 44	1192	277, 963-969.
45 46 47	1193	MARSHALL, K. E. & SINCLAIR, B. J. (2011). The sub-lethal effects of repeated freezing in the
48 49	1194	woolly bear caterpillar Pyrrharctia isabella. Journal of Experimental Biology 214, 1205-
50 51	1195	1212.
52 53 54	1196	MARSHALL, K. E. & SINCLAIR, B. J. (2012a). The impacts of repeated cold exposure on insects.
55 56 57 58	1197	Journal of Experimental Biology 215, 1607-1613.
59 60		53

1 2 3		
4	1198	MARSHALL, K. E. & SINCLAIR, B. J. (2012b). Threshold temperatures mediate the impact of
5 6 7	1199	reduced snow cover on overwintering freeze-tolerant caterpillars. Naturwissenschaften
8 9	1200	99, 33-41.
10 11	1201	MARTIN, T. & MARON, J. (2012). Climate impacts on bird and plant communities from altered
12 13 14	1202	animal-plant interactions. Nature Climate Change 2, 195-200.
15 16 17	1203	MATZNER, E. & BORKEN, W. (2008). Do freeze-thaw events enhance C and N losses from soils
17 18 19	1204	of different ecosystems? A review. European Journal of Soil Science 59, 274-284.
20	1205	MAYR, S., GRUBER, A. & BAUER, H. (2003). Repeated freeze-thaw cycles induce embolism in
21 22 23 24	1206	drought stressed conifers (Norway spruce, stone pine). Planta 217, 436-441.
24 25 26	1207	MUIR, T. J., DISHONG, B. D., LEE, R. E. & COSTANZO, J. P. (2013). Energy use and management
27	1208	of energy reserves in hatchling turtles (Chrysemys picta) exposed to variable winter
28 29 30 31 32 33	1209	conditions. Journal of Thermal Biology 38, 324-330.
	1210	NEUVONEN, S., NIEMELÄ, P. & VIRTANEN, T. (1999). Climatic Change and insect outbreaks in
34 35 36	1211	boreal forests: the role of winter temperatures. <i>Ecological Bulletins</i> 47, 63-67.
36 37 38	1212	Olofsson, J., Oksanen, L., Callaghan, T., Hulme, P. E., Oksanen, T. & Suominen, O.
39 40	1213	(2009). Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change
41 42	1214	<i>Biology</i> 15 , 2681-2693.
43 44 45	1215	OZGUL, A., CHILDS, D. Z., OLI, M. K., ARMITAGE, K. B., BLUMSTEIN, D. T., OLSON, L. E.,
46 47 48 49	1216	TULJAPURKAR, S. & COULSON, T. (2010). Coupled dynamics of body mass and
	1217	population growth in response to environmental change. <i>Nature</i> 466 , 482-U5.
50 51 52	1218	OZTAS, T. & FAYETORBAY, F. (2003). Effect of freezing and thawing processes on soil aggregate
53 54 55 56 57 58	1219	stability. Catena 52, 1-8.
59 60		54

1 2 3		
4	1220	PARMESAN, C., RYRHOLM, N., STEFANESCU, C., HILL, J. K., THOMAS, C. D., DESCIMON, H.,
5 6 7	1221	HUNTLEY, B., KAILA, L., KULLBERG, J., TAMMARU, T., TENNENT, W. J., THOMAS, J. A. &
, 8 9	1222	WARREN, M. (1999). Poleward shifts in geographical ranges of butterfly species
10 11	1223	associated with regional warming. Nature 399, 579-583.
12 13 14	1224	PAULI, J. N., ZUCKERBERG, B., WHITEMAN, J. P. & PORTER, W. (2013). The subnivium: a
15 16	1225	deteriorating seasonal refugium. Frontiers in Ecology and the Environment 11, 260-267.
17 18 19	1226	PELINI, S. L., DZURISIN, J. D. K., PRIOR, K. M., WILLIAMS, C. M., MARSICO, T. D., SINCLAIR, B.
20	1227	J. & HELLMANN, J. J. (2009). Translocation experiments with butterflies reveal limits to
21 22 23	1228	enhancement of poleward populations under climate change. Proceedings of the National
24 25	1229	Academy of Sciences of the United States of America 106, 11160-11165.
26 27 28	1230	PERSSON, I. L., NILSSON, M. B., PASTOR, J., ERIKSSON, T., BERGSTROM, R. & DANELL, K. (2009).
28 29 30	1231	Depression of belowground respiration rates at simulated high moose population
31 32	1232	densities in boreal forests. <i>Ecology</i> 90 , 2724-2733.
33 34 35	1233	PETTORELLI, N., WELADJI, R. B., HOLAND, O., MYSTERUD, A., BREIE, H. & STENSETH, N. C.
35 36 37 38	1234	(2005). The relative role of winter and spring conditions: linking climate and landscape-
38 39 40	1235	scale plant phenology to alpine reindeer body mass. <i>Biology Letters</i> 1, 24-26.
41 42	1236	PIGLIUCCI, M. & MARLOW, E. T. (2001). Differentiation for flowering time and phenotypic
43 44	1237	integration in Arabidopsis thaliana in response to season length and vernalization.
45 46 47	1238	<i>Oecologia</i> 127, 501-508.
48 49	1239	POST, E. & FORCHHAMMER, M. C. (2008). Climate change reduces reproductive success of an
50 51	1240	Arctic herbivore through trophic mismatch. Philosophical Transactions of the Royal
52 53 54 55 56 57 58 59	1241	Society B 363, 2369-2375.
60		55

1 2 3		
4	1242	POST, E., PETERSON, R. O., STENSETH, N. C. & MCLAREN, B. E. (1999). Ecosystem
5 6 7	1243	consequences of wolf behavioural response to climate. <i>Nature</i> 401 , 905-907.
8 9	1244	POST, E., STENSETH, N. C., LANGVATN, R. & FROMENTIN, J. M. (1997). Global climate change
10 11	1245	and phenotypic variation among red deer cohorts. Proceedings of the Royal Society of
12 13 14	1246	London B 264, 1317-1324.
15 16	1247	POTTER, K. A., WOODS, H. A. & PINCEBOURDE, S. (2013). Microclimatic challenges in global
17 18 19	1248	change biology. Global Change Biology, n/a-n/a.
20	1249	PRIOR, K. M., DZURISIN, J. D. K., PELINI, S. L. & HELLMANN, J. J. (2009). Biology of larvae and
21 22 23 24	1250	adults of Erynnis propertius at the northern edge of its range. Canadian Entomologist
25	1251	141, 161-171.
26 27 28	1252	REGEHR, E. V., LUNN, N. J., AMSTRUP, S. C. & STIRLING, L. (2007). Effects of earlier sea ice
28 29 30	1253	breakup on survival and population size of polar bears in western Hudson bay. Journal of
31 32 33	1254	Wildlife Management 71, 2673-2683.
34 35 36	1255	RÉGNIÈRE, J. & BENTZ, B. (2007). Modeling cold tolerance in the mountain pine beetle,
36 37 38	1256	Dendroctonus ponderosae. Journal of Insect Physiology 53 , 559-572.
30 39 40	1257	REID, D. G., BILODEAU, F., KREBS, C. J., GAUTHIER, G., KENNEY, A. J., GILBERT, B. S., LEUNG,
41 42	1258	M. C. Y., DUCHESNE, D. & HOFER, E. (2012). Lemming winter habitat choice: a snow-
43 44 45	1259	fencing experiment. Oecologia 168, 935-946.
45 46 47	1260	ROBBINS, C. T., LOPEZ-ALFARO, C., RODE, K. D., TOIEN, O. & NELSON, O. L. (2012).
48 49	1261	Hibernation and seasonal fasting in bears: the energetic costs and consequences for polar
50 51 52	1262	bears. Journal of Mammalogy 93, 1493-1503.
53 54	1263	ROLAND, J. & MATTER, S. F. (2013). Variability in winter climate and winter extremes reduces
55 56 57	1264	population growth of an alpine butterfly. <i>Ecology</i> 94 , 190-199.
58 59 60		56

1 2 3		
4	1265	RUEL, J. J. & AYRES, M. P. (1999). Jensen's inequality predicts effects of environmental
5 6 7	1266	variation. Trends in Ecology & Evolution 14, 361-366.
, 8 9	1267	SANTIAGO, A., HERRANZ, J. M., COPETE, E. & FERRANDIS, P. (2013). Species-specific
10 11	1268	environmental requirements to break seed dormancy: implications for selection of
12 13	1269	regeneration niches in three Lonicera (Caprifoliaceae) species. Botany-Botanique 91,
14 15 16 17	1270	225-233.
17 18 19	1271	SCHMIDT, N. M., IMS, R. A., HOYE, T. T., GILG, O., HANSEN, L. H., HANSEN, J., LUND, M.,
20	1272	FUGLEI, E., FORCHHAMMER, M. C. & SITTLER, B. (2012). Response of an arctic predator
21 22 23	1273	guild to collapsing lemming cycles. Proceedings of the Royal Society B 279, 4417-4422.
24 25	1274	SEARS, M. W., HAYES, J. P., BANTA, M. R. & MCCORMICK, D. (2009). Out in the cold:
26 27 28	1275	physiological capacity influences behaviour in deer mice. Functional Ecology 23, 774-
28 29 30	1276	783.
31 32	1277	Serrano, E., Granados, J. E., Sarasa, M., Gonzalez, F., Fandos, P., Soriguer, R. C. &
33 34 35 36	1278	PEREZ, J. M. (2011). The effects of winter severity and population density on body stores
36 37 38	1279	in the Iberian wild goat (<i>Capra pyrenaica</i>) in a highly seasonal mountain environment.
38 39 40	1280	European Journal of Wildlife Research 57, 45-55.
41 42	1281	SGUEO, C., WELLS, M. E., RUSSELL, D. E. & SCHAEFFER, P. J. (2012). Acclimatization of
43 44 45	1282	seasonal energetics in northern cardinals (Cardinalis cardinalis) through plasticity of
45 46 47	1283	metabolic rates and ceilings. Journal of Experimental Biology 215, 2418-2424.
48 49	1284	SHEN, K. P. & HARTE, J. (2000). Ecosystem climate manipulations. In Methods in Ecosystem
50 51	1285	Science (ed. O. E. Sala, R. B. Jackson, H. A. Mooney and R. W. Howarth), pp. 353-369.
52 53 54 55 56 57 58 59	1286	Springer, New York.
60		57

2 3	1287	
4 5	1287	SINCLAIR, B. J. (2001). Field ecology of freeze tolerance: interannual variation in cooling rates,
6 7	1288	freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta
, 8 9	1289	quinquemaculata. Oikos 93, 286-293.
10 11 12	1290	SINCLAIR, B. J., STINZIANO, J. R., WILLIAMS, C. M., MACMILLAN, H. A., MARSHALL, K. E. &
13 14	1291	STOREY, K. B. (2013). Real-time measurement of metabolic rate during freezing and
14 15 16 17	1292	thawing of the wood frog, Rana sylvatica: implications for overwinter energy use.
18 19	1293	Journal of Experimental Biology 216, 292-302.
20 21	1294	SOBEK-SWANT, S., CROSTHWAITE, J. C., LYONS, D. B. & SINCLAIR, B. J. (2012). Could
22 23 24	1295	phenotypic plasticity limit an invasive species? Incomplete reversibility of mid-winter
25	1296	deacclimation in emerald ash borer. Biological Invasions 14, 115-125.
26 27 28	1297	SOMERO, G. N. (2010). The physiology of climate change: how potentials for acclimatization and
28 29 30	1298	genetic adaptation will determine 'winners' and 'losers'. Journal of Experimental Biology
31 32 22	1299	213, 912-920.
33 34 35 36	1300	SOUSA, T., DOMINGOS, T., POGGIALE, J. C. & KOOIJMAN, S. (2010). Dynamic energy budget
37 38	1301	theory restores coherence in biology. <i>Philosophical Transactions of the Royal Society B</i>
39	1302	365, 3413-3428.
40 41 42 43	1303	SPIEGEL-ROY, P. & GOLDSCHMIDT, E. E. (2008). The Biology of Citrus. Cambridge University
44 45	1304	Press, Cambridge.
43 46 47	1305	STAHL, K., MOORE, R. D. & MCKENDRY, I. G. (2006). Climatology of winter cold spells in
48 49	1306	relation to mountain pine beetle mortality in British Columbia, Canada. Climate Research
50 51 52 53 54 55 56 57 58 59	1307	32, 13-23.
60		58

1 2 3		
4	1308	STOKS, R. & DE BLOCK, M. (2011). Rapid Growth Reduces Cold Resistance: Evidence from
5 6 7	1309	Latitudinal Variation in Growth Rate, Cold Resistance and Stress Proteins. PLoS ONE 6,
7 8 9	1310	e16935.
10 11	1311	STURM, M., SCHIMEL, J., MICHAELSON, G., WELKER, J. M., OBERBAUER, S. F., LISTON, G. E.,
12 13 14	1312	FAHNESTOCK, J. & ROMANOVSKY, V. E. (2005). Winter biological processes could help
15 16 17	1313	convert arctic tundra to shrubland. <i>Bioscience</i> 55 , 17-26.
17 18 19	1314	SUTHERST, R. W. & MAYWALD, G. (2005). A climate model of the red imported fire ant,
20	1315	Solenopsis invicta Buren (Hymenoptera : Formicidae): Implications for invasion of new
21 22 23	1316	regions, particularly Oceania. Environmental Entomology 34, 317-335.
24 25	1317	SYMON, C., ARRIS, L. & HEAL, B. (2005). Arctic Climate Impact Assessment. Cambridge
26 27 28	1318	University Press, New York.
28 29 30	1319	TATTERSALL, G. J. & ULTSCH, G. R. (2008). Physiological ecology of aquatic overwintering in
31 32 33	1320	ranid frogs. <i>Biological Reviews</i> 83, 119-140.
34 35 36	1321	TAUBER, M. J., TAUBER, C. A. & MASAKI, S. (1986). Seasonal Adaptations of Insects. Oxford
36 37 38	1322	University Press, New York.
39 40	1323	THACKERAY, S. J., SPARKS, T. H., FREDERIKSEN, M., BURTHE, S., BACON, P. J., BELL, J. R.,
41 42 43	1324	BOTHAM, M. S., BRERETON, T. M., BRIGHT, P. W., CARVALHO, L., CLUTTON-BROCK, T.,
43 44 45	1325	DAWSON, A., EDWARDS, M., ELLIOTT, J. M., HARRINGTON, R., JOHNS, D., JONES, I. D.,
46 47	1326	JONES, J. T., LEECH, D. I., ROY, D. B., SCOTT, W. A., SMITH, M., SMITHERS, R. J.,
48 49 50 51 52	1327	WINFIELD, I. J. & WANLESS, S. (2010). Trophic level asynchrony in rates of phenological
	1328	change for marine, freshwater and terrestrial environments. Global Change Biology 16,
52 53 54 55 56 57 58 59	1329	3304-3313.
60		5

1 2 3	1330	TRAN, J. K., YLIOJA, T., BILLINGS, R. F., REGNIERE, J. & AYRES, M. P. (2007). Impact of
4 5	1000	TRAN, J. K., TLIOJA, T., DILLINGS, K. P., REGNIERE, J. & ATRES, M. F. (2007). Impact of
6 7	1331	minimum winter temperatures on the population dynamics of Dendroctonus frontalis.
8 9	1332	Ecological Applications 17, 882-899.
10 11	1333	TROTTER, R. T. & SHIELDS, K. S. (2009). Variation in Winter Survival of the Invasive Hemlock
12 13	1334	Woolly Adelgid (Hemiptera: Adelgidae) Across the Eastern United States.
14 15 16 17	1335	Environmental Entomology 38, 577-587.
17 18 19	1336	TURBILL, C., BIEBER, C. & RUF, T. (2011). Hibernation is associated with increased survival and
20	1337	the evolution of slow life histories among mammals. Proceedings of the Royal Society B
21 22 23	1338	278, 3355-3363.
24 25	1339	Tyler, N. J. C., Forchhammer, M. C. & Øritsland, N. A. (2008). Nonlinear effects of climate
26 27 28	1340	and density in the dynamics of a fluctuating population of reindeer. Ecology 89, 1675-
28 29 30	1341	1686.
31 32 33	1342	VAN ASCH, M., SALIS, L., HOLLEMAN, L. J. M., VAN LITH, B. & VISSER, M. E. (2013).
34 35 36	1343	Evolutionary response of the egg hatching date of a herbivorous insect under climate
36 37 38	1344	change. <i>Nature Climate Change</i> 3 , 244-248.
38 39 40	1345	VAN DER PUTTEN, W. H., MACEL, M. & VISSER, M. E. (2010). Predicting species distribution and
41 42 43	1346	abundance responses to climate change: why it is essential to include biotic interactions
43 44 45	1347	across trophic levels. Philosophical Transactions of the Royal Society B-Biological
43 46 47	1348	<i>Sciences</i> 365, 2025-2034.
48 49	1349	VINCENT, L. A. & MEKIS, E. (2006). Changes in daily and extreme temperature and precipitation
50 51	1350	indices for Canada over the twentieth century. Atmosphere-Ocean 44, 177-193.
52 53 54	1351	VIRTANEN, T., NEUVONEN, S. & NIKULA, A. (1998). Modelling topoclimatic patterns of egg
55 56 57 58 59	1352	mortality of <i>Epirrita autumnata</i> (Lepidoptera: Geometridae) with a geographical
60		60

Page 61 of 76

1 2 3		
3 4 5	1353	information system: predictions for current climate and warmer climate scenarios.
5 6 7 8 9 10 11 12	1354	Journal of Applied Ecology 35, 311-322.
	1355	WALTHER, G. R. (2010). Community and ecosystem responses to recent climate change.
	1356	Philosophical Transactions of the Royal Society B 365, 2019-2024.
12 13 14	1357	WILLIAMS, C. M., HELLMANN, J. J. & SINCLAIR, B. J. (2012a). Lepidopteran species differ in
15 16 17	1358	susceptibility to winter warming. Climate Research 53, 119-130.
17 18 19	1359	WILLIAMS, C. M., MARSHALL, K. E., MACMILLAN, H. A., DZURISIN, J. D. K., HELLMANN, J. J. &
20	1360	SINCLAIR, B. J. (2012b). Thermal variability increases the impact of autumnal warming
21 22 23 24	1361	and drives metabolic suppression in an overwintering butterfly. PLoS ONE 7, e34470.
24 25 26	1362	WILLIAMS, S. E., SHOO, L. P., ISAAC, J. L., HOFFMANN, A. A. & LANGHAM, G. (2008). Towards
27 28 29	1363	an Integrated Framework for Assessing the Vulnerability of Species to Climate Change.
29 30 31	1364	<i>PloS Biology</i> 6 , 2621-2626.
31 32 33	1365	WILLIS, C. G., RUHFEL, B., PRIMACK, R. B., MILLER-RUSHING, A. J. & DAVIS, C. C. (2008).
34 35 36	1366	Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change.
36 37 38	1367	Proceedings of the National Academy of Sciences of the United States of America 105,
30 39 40	1368	17029-17033.
41 42	1369	YOCCOZ, N. G. & IMS, R. A. (1999). Demography of small mammals in cold regions: the
43 44 45	1370	importance of environmental variability. Ecological Bulletins 47, 137-144.
46 47 48 49	1371	YOM-TOV, Y., YOM-TOV, S. & JARRELL, G. (2008). Recent increase in body size of the
	1372	American marten Martes americana in Alaska. Biological Journal of the Linnean Society
50 51 52 53 54 55 56 57 58 59 60	1373	93, 701-707. 61

1 2 3	1374	YU, H. Y., LUEDELING, E. & XU, J. C. (2010). Winter and spring warming result in delayed
4 5		
6 7	1375	spring phenology on the Tibetan Plateau. Proceedings of the National Academy of
8 9	1376	Sciences of the United States of America 107, 22151-22156.
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1377	YU, Z., LIU, S. R., WANG, J. X., SUN, P. S., LIU, W. G. & HARTLEY, D. S. (2013). Effects of
	1378	seasonal snow on the growing season of temperate vegetation in China. Global Change
	1379	<i>Biology</i> 19, 2182-2195.
	1380	ZHANG, G., ZHANG, Y., DONG, J. & XIAO, X. (2013). Green-up dates in the Tibetan Plateau have
	1381	continuously advanced from 1982 to 2011. Proceedings of the National Academy of
	1382	Sciences of the United States of America 110, 4309-4314.
$\begin{array}{c} 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 940\\ 41\\ 42\\ 43\\ 44\\ 56\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\end{array}$	1383	
59 60		62

Figure Captions

Biological Reviews

Figure 1 - Projected winter climate change in terrestrial systems over the next century. Predicted January (northern hemisphere) or July (southern hemisphere) differences between 2090-2099 and 2000-2009 in (A) mean surface air temperature and (B) total precipitation. Tropical regions (23°S to 23°N) that do not experience winter are in grey. Predictions are from the HADCM3 model, A2 scenario (Lowe, 2005); means for each cell over the early time period were subtracted from the means for the late time period to give projected changes. **Figure 2** – Examples of the effects of changes in air temperature and snowfall on snow depth and soil temperature during winter. (A) Current climate. Note that snow cover buffers soil

temperatures. (B) increased mean air temperature results in increased soil freeze-thaw cycles during a mid-winter melt because the soils become exposed to warm air temperatures during the day and freezing air temperatures at night. (C) scenarios whereby increased air temperature variability modifies soil freezing. In late fall, an early frost exposes soil to cold air prior to development of the snowpack. Warm spells in either mid-winter or early spring melt the snowpack, leaving soils vulnerable to subsequent drops in air temperature. Finally, snow melt can be accelerated by increased diel air temperature variability. (D) reduced winter precipitation leads to increased soil freeze-thaw cycles following a mid-winter melt and during spring melt as a result of reduced snow cover at these times.

Figure 3 - A blueprint for predicting the biological impacts of winter climate change on terrestrial organisms. Abiotic drivers of winter climate change (black circles) alter physiological, biotic or abiotic processes (white, light grey and white rectangles respectively) leading to

biological impacts (white hexagons). Signs on arrows indicate the direction of the relationship, and can be navigated with reference to Table 1 and examples in the text. The dotted line indicates that decreases in snow and ice occur in response to increased macroclimatic temperatures; all other relationships occur within organisms' microclimates. **Figure 4** - The relationship between winter energy use and phenology for dormant organisms. A longer winter (early onset of or later exit from dormancy) results in higher energy use. Winter climate change is increasing total energy use through increases in means or variability of temperatures (effectively elevating the entire surface, not shown), and organisms have responded to this in three ways: A) increasing the degree of metabolic suppression over winter, and thus lowering energy costs (e.g. the duskywing caterpillar *Erynnis propertius*; Williams et al., 2012b); B) delaying the onset of entry into dormancy, thus reducing the period of pre-winter energy drain (e.g. the pitcher plant mosquito *Wyeomyia smithii*; Bradshaw & Holzapfel, 2001); and C) advancing the date of exit from dormancy, to take advantage of opportunities to feed and reduce winter energy drain (e.g. the yellow-bellied marmot, Marmota flaviventris; Ozgul et al., 2010). **Figure 5** – Integrating winter processes into growing season biology. This assumes that reproduction (which determines fitness) occurs in the growing season, but could be modified for other life histories. The black diamond 'winter' represents the abiotic conditions that are

experienced during winter, and the three white boxes are the outcomes of biological processes

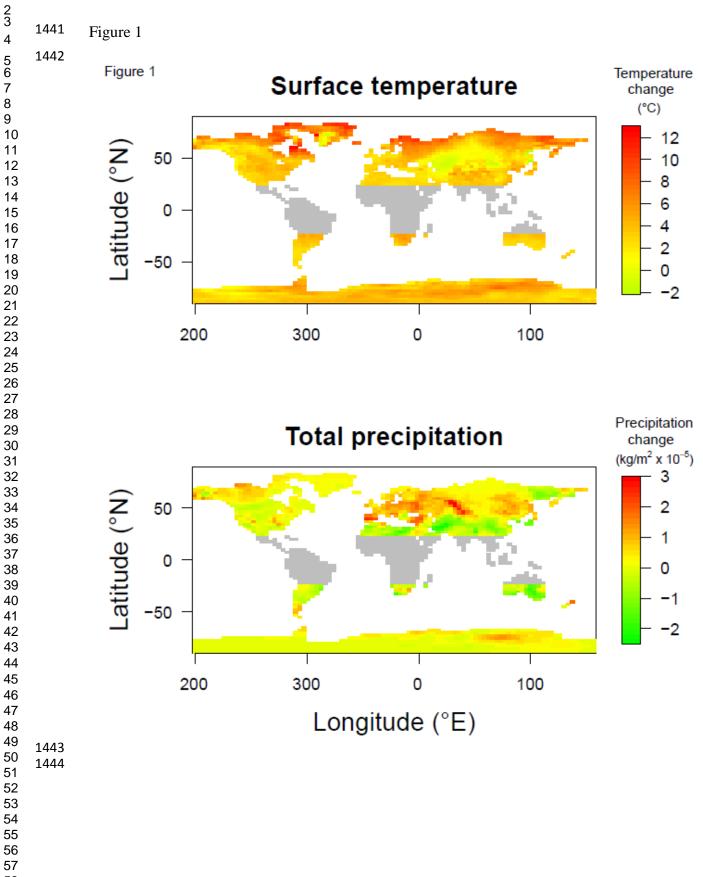
and stresses described in Figure 1 and Table 1. These processes affect post-winter condition,

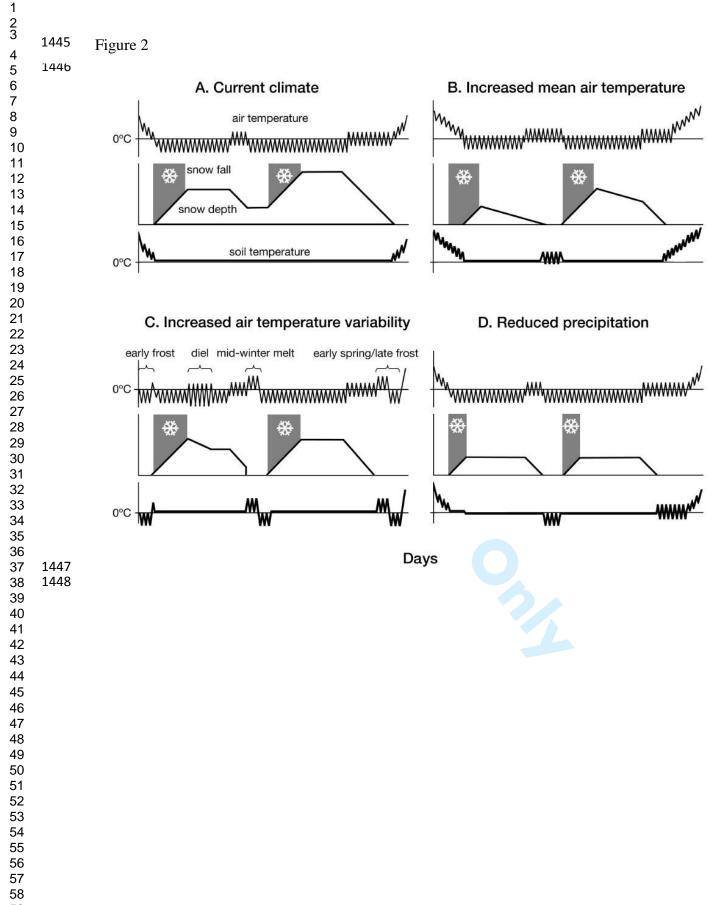
1429 framework), which in turn determines the pre-winter condition of organisms. The strength and

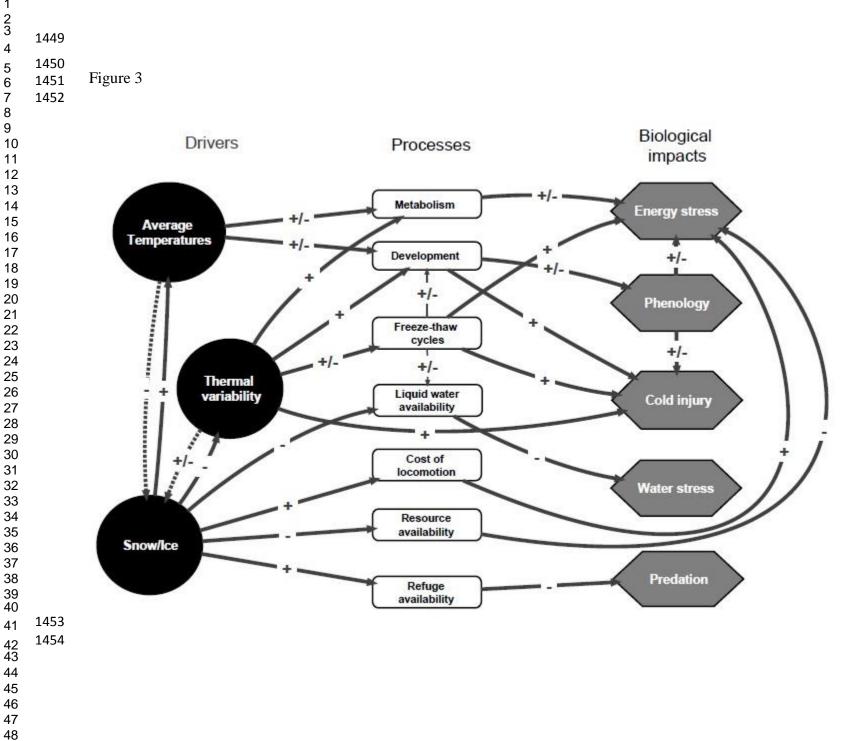
which affects growing season performance (all growing season processes are combined in this

1	
2	
3	
4	
5	
23 45 678 910112 1345 167	
7	
8	
9	
10	
11	
12	
13	
14	
10	
10	
.,	
18	
19	
20	
21 22	
 วว	
23 24	
$\begin{array}{c} 18\\ 19\\ 20\\ 22\\ 23\\ 22\\ 25\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 37\\ 38\\ 39\\ \end{array}$	
25 26	
20	
20	
20 20	
20	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

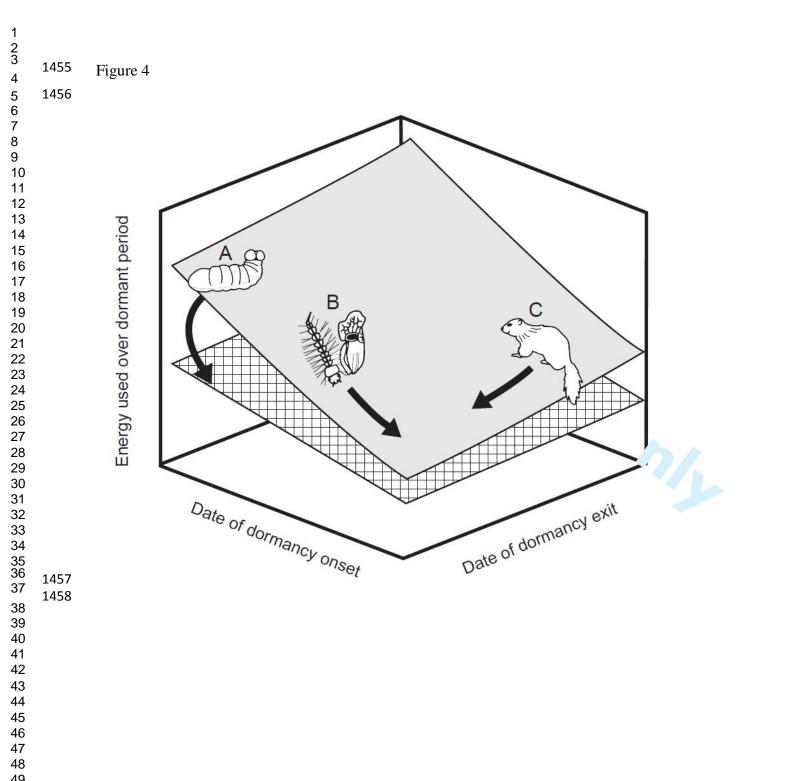
1430 importance of these links will depend on life history and the extent to which summer and winter stresses exacerbate or negate one another. 1431

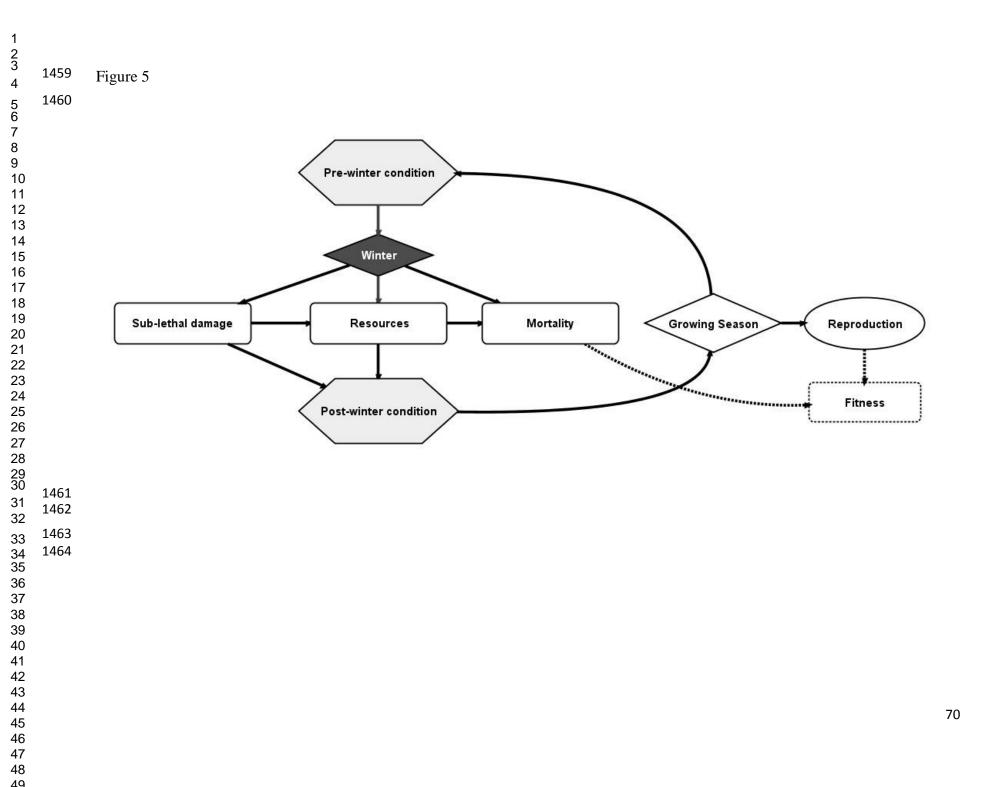

1432

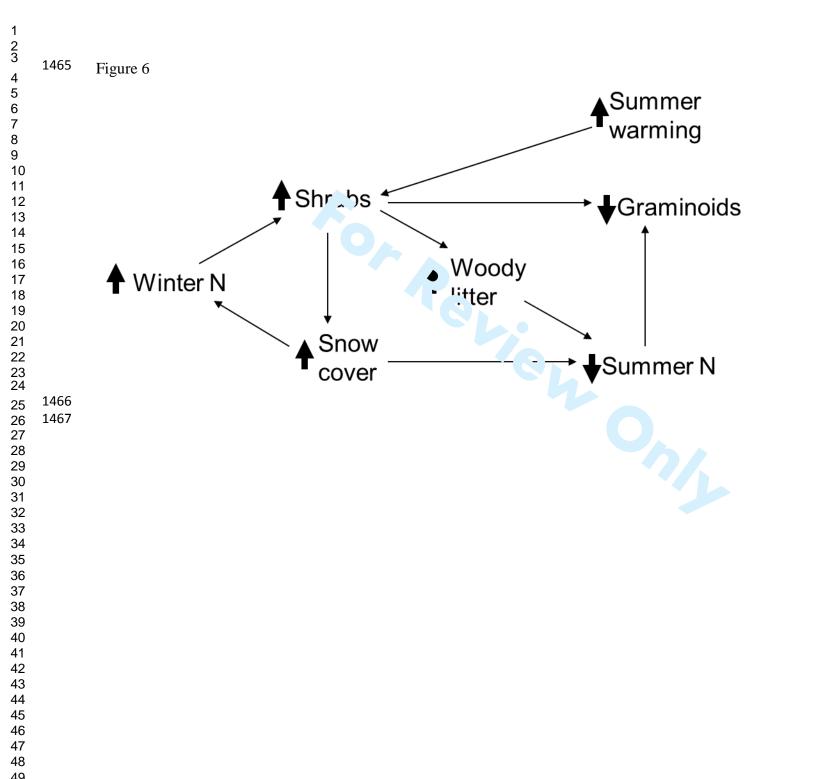

1438


1439

1440


1433 Figure 6 – Example of how adding links to account for species interactions and ecosystem 1434 processes that determine seasonal changes in resource availability can extend the integration of 1435 winter processes into growing season biology to the ecosystem scale. This example, simplified from(based on Sturm et al., 2005), describes how climate warming may drive potential feedbacks 1436 .ie. 1437 between changes in snow cover, nutrient availability and plant species composition in the Arctic.





Page 71 of 76

Table 1 – Organismal traits influencing vulnerability to winter climate change. Vulnerability is a product of traits that increase stress exposure in response to a climate driver and traits that increase sensitivity to this stress, with sensitivity determined by a lack of either resilience or adaptive potential. Climate drivers (indicated in italics, and with reference to the text and Figure 3) are increased average temperatures (AvT), thermal variability (subdivided here into increased daily thermal variability (DV), extreme temperatures (ExT) and increased freeze-thaw cycles (F/T)), increased snow (S+) and decreased snow (S-).						
Traits determining stress exposure	Traits determining sensitivity to stress	Proximal cause of				
		vulnerability				
Energy balance						
Thermoregulatory strategy (AvT, DV)	Reproductive strategy (AvT, DV)	• Consumption of finite				
• poikilotherms > homeotherms	• capital breeding > income	energy reserves (AvT,				
Energy intake and availability (AvT, DV, S+)	Energy storage(AvT, DV)	DV)				
• no energy intake/limited food available	• low > high pre-winter energy stores	Decreased resource				
> winter energy uptake	Energetic recovery (AvT, DV)	availability				
Metabolic suppression (AvT, DV, $S+$)	• no post-winter feeding > feeds post-	• Increased cost of				

winter

Feeding strategy (S+, S-)

• specialist > generalist

Metabolic suppression (AvT, DV, S+) • low > high suppression

Metabolic plasticity (AvT, DV)

• low > high plasticity

Trophic position (S+)

- predator > prey
- heterotroph > autotroph
- subnivean > supranivean

locomotion (S+)

•

(S+)

Decreased food access

	Traits determining stress exposure	Traits determining sensitivity to stress	Proximal cause of	
			vulnerability	
	Phenology			
4	<pre>Phenology Chilling or vernalization requirements (AvT) obligate > facultative dormancy chilling requirement > non-thermal cues Habitat requirements (S-) snow dependent > not snow dependent</pre>	<pre>Trophic level (AvT)</pre>	 Reduction in length of growing season (AvT) Trophic mismatches (AvT) habitat not available for reproduction (S-) 	

Table 1 (continued)

Cold injury

Cold hardiness (ExT)

• cold-susceptible > cold-hardy

Cold tolerance strategy (*ExT*)

 seasonally programmed but readily deacclimate > constitutive protection

Position of biological thresholds (ExT, F/T)

 lower/higher than current conditions > near current conditions

Habitat (S-)

• subnivean > supranivean

Water Balance

Susceptibility to waterlogging and ice encasement

• hypoxia intolerant > hypoxia tolerant

Rapid cold hardening (ExT)

• none > effective rapid hardening response

Thermal plasticity (ExT)

- no reacclimation > reacclimation
 Cumulative impact of repeated stress (*F/T*)
 - cumulative > no cumulative impact/impact reaches asymptote

- Direct injury from cold (*ExT*)
- Cumulative cold injury (*F*/*T*)
- Energetic costs of repairing cold injury (*F*/*T*, *S*-)

Water balance strategy

•

- no winter water consumption > water consumption over winter
- Hypoxia from waterlogging/ice encasement
- Unavailability of liquid water when frozen

1475

	Traits determining stress exposure	Traits determining sensitivity to stress	Proximal cause of
			vulnerability
	Predation		
	Trophic position (S-)	Predator avoidance (S-)	Increased mortality
	• prey > predator	• low camouflage plasticity > low	
	Habitat (S-)	• low defenses > high	
	• subnivian > supranivean	• high palatability > low	
		• low alertness > high	
76 77			

2 3	1478
4	1.70
5 6	1479
7 8 9 10 11 12 13 15 16 17 18 19 20 21 22	
22 23 24	
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	1480 1481

1

Quantity of snow

Timing of snow cover

Reduced snow cover

Increased snow cover

early snowmelt

delayed snowmelt

mid-winter snowmelt

increased soil frost

increased vulnerability of prey

Table 2 – The range of effects of changes in the quantity and timing of snow cover on overwintering organisms.

(decreased food access with increased rain-on-snow)

potential phenological mismatch for dormant organisms

increased foraging and locomotion costs (winter-active organisms) increased energetic maintenance costs (winter-inactive organisms)

increased food access for predators/browsers

earlier warm-season resource gathering

delayed warm-season resource gathering

cold deacclimation followed by frost exposure

increased protection from frost

increased access to liquid water