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Abstract 

Winter is a key driver of individual performance, community composition, and ecological 

interactions in terrestrial habitats. Although climate change research tends to focus on 

performance in the growing season, climate change is also modifying winter conditions rapidly. 

Changes to winter temperatures, the variability of winter conditions, and winter snow cover can 

interact to induce cold injury, alter energy and water balance, advance or retard phenology, and 

modify community interactions. Species vary in their susceptibility to these winter drivers, 

hampering efforts to predict biological responses to climate change. Existing frameworks for 

predicting the impacts of climate change do not incorporate the complexity of organismal 

responses to winter. Here, we synthesise organismal responses to winter climate change, and use 

this synthesis to build a framework to predict exposure and sensitivity to negative impacts, and 

that can be used to estimate the vulnerability of species to winter climate change. We describe 

the importance of relationships between winter conditions and performance during the growing 

season in determining fitness, and demonstrate how summer and winter processes are linked. 

Incorporating winter into current models will require concerted effort from theoreticians and 

empiricists, and the expansion of current growing season studies to incorporate winter. 

23 



45 
46 
47 
48 
49 
50 
51 

52 
53 
54 
55 
56 
57 
58 
59 
60 

X. References 55 

56 
57 

3 

 

Page 3 of 76 Biological Reviews 
 

 
1 
2 
3 37 
4 
5 

6 38 
7 
8 39 
9 
10 

11 40 
12 

13 41 
14 

15 42 
16 
17 

18 43 
19 

20 44 
21 

22 45 
23 
24 

25 46 
26 

27 47 
28 

29 48 
30 
31 

32 49 
33 

34 50 
35 
36 

37 51 
38 

39 52 
40 

41 53 
42 
43 

44 54 

 
 

Contents 

 

I. Introduction 

 

II. Winter climate change 

 

III. Mechanistic bases of the biological impacts of winter climate change 

 

(1) Increased average winter temperatures 

 

(a) Effects on metabolic rate 

 

(b) Effects on development and phenology 

 

(2) Altered thermal variability 

 

(a) Intensity and regularity of winter extremes 

 

(b) Frequency of threshold-crossing events 

 

(c) Impacts of the amplitude of thermal cycles 

 

(3) Changing snow cover 

 

IV. Links between winter and summer responses to climate change 

 

V. Scaling up to populations, communities, and ecosystems 

 

VI. Predicting vulnerability to winter climate change 

 

VII. A call to further integrate winter into climate change research 

 

VIII. Conclusions 

 

IX. Acknowledgements 



46 
47 
48 
49 
50 
51 

52 
53 
54 
55 
56 
57 
58 
59 

60 

be compounded by the physical barriers presented by snow and ice and the increased cost of 77 

thermoregulation. Energetic deficits accrued during the winter can lead to mortality or reduce 78 

subsequent fecundity (Hahn & Denlinger, 2011; Irwin & Lee, 2003), and overwintering 79 

energetics constrain some species’ distributions (e.g. Humphries, Thomas & Speakman, 2002). 80 
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I. Introduction 

Terrestrial organisms in temperate, alpine and polar environments may spend more than 

half their lives overwintering. In these habitats, winter is the period during which sustained low 

temperatures (usually below freezing) occur. Winter conditions vary geographically more than 

summer conditions (Bonan, 2003), and thus can delineate latitudinal variation in biological 

processes more starkly than conditions in the growing season. For example, the respective 

extreme maximum temperatures recorded in Montreal, Quebec (45 °N) in Canada, and Miami, 

Florida (25 °N) in the United States over the 1997-2000 period are 36.1 °C and 36.7 °C, whereas 

the respective extreme minimum temperatures at these locations, -37.8 °C and -1.1 °C, differ 

dramatically (data from NOAA National Climatic Data Centre (USA) www.ncdc.noaa.gov and 

Environment Canada climate.weather.gc.ca). Extreme low winter temperatures constrain the 

geographic distributions of many species, presented most graphically in the plant hardiness zones 

used by gardeners and farmers: data on frost susceptibility is a key component underlying these 

maps (Daly et al., 2012). Winter temperatures that directly cause mortality limit the northern 

distributions of organisms as diverse as the Virginia opossum in eastern North America (Kanda, 

2005), the mountain pine beetle in western North America (Stahl, Moore & McKendry, 2006), 

and citrus crops worldwide (Spiegel-Roy & Goldschmidt, 2008). Winter also poses indirect 

challenges. Many organisms overwinter in dormancy (and therefore cannot replenish energy 

reserves until spring).  Those organisms that remain active face resource shortages, which may 

61 

69 
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migratory and hibernation phenotypes (Alerstam, Hedenstrom & Akesson, 2003; Turbill, Bieber 46 
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99 

& Ruf, 2011).  For ectotherms, microbes, and plants, the threat of internal ice formation has 100 

driven the evolution of physiological traits that allow them to resist low temperatures (for 101 

example, freeze tolerance in insects and plants; Margesin, Neuner & Storey, 2007). 102 

Nevertheless, both endotherms and ectotherms suffer high mortality over winter (Hodges, 103 
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In spite of the constraints, many species thrive in places with severe winters, and there 

are species that might be considered winter-dependent; for example, most Arctic vertebrates 

require snow and ice for their reproduction and survival (Gilg et al., 2012), and some 

invertebrates disperse and hunt primarily in subnivean (beneath the snow pack) spaces 

(Addington & Seastedt, 1999; Pauli et al., 2013).  Some species that overwinter in a dormant 

state have evolved dependence on winter cues for termination of dormancy (Amasino, 2004; 

Tauber, Tauber & Masaki, 1986), and monarch butterflies rely on winter cold to reverse the 

direction of their fall migration (Guerra & Reppert, 2013). Many ectotherms and hibernating 

mammals rely on low winter temperatures to reduce consumption of energy stores (Humphries et 

al., 2002; Williams et al., 2012b). At the ecosystem level, freezing of soil in winter can mobilise 

nutrients (and/or damage roots), affecting nutrient availability and uptake, and therefore primary 

productivity, in the spring (Durán et al., 2013; Groffman et al., 2001). Likewise, winter 

conditions in many species can define organismal performance in the subsequent summer (Boggs 

& Inouye, 2012; Post et al., 1997; Serrano et al., 2011). 

Repeated glacial/interglacial cycles, coupled with continental drift in and out of the 

tropics, mean that physiological and life history adaptations to winter have evolved repeatedly in 

multiple lineages of organisms.  The evolutionary impact of winter on life histories is significant 

– for example, the northern temperate winter may have been a primary driver of the evolution of 

84 
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climate change in general. 122 

The interaction between a species’ traits (and the plasticity of those traits; Chown et al., 123 

2007; Somero, 2010) and changes in the abiotic environment will determine success or failure in 124 

a changing world (Foden et al., 2013), so predictions would ideally utilise information on species 125 

traits combined with climate models to output vulnerability.  Meta-analyses have shed some light 126 
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Boonstra & Krebs, 2006; Roland & Matter, 2013; Stahl et al., 2006), and the population 
 

dynamics of diverse fast-reproducing animals including lemmings and moths can be driven 
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primarily by winter mortality (Callaghan et al., 2004; Virtanen, Neuvonen & Nikula, 1998). 

 

Anthropogenic climate change is rapidly altering biological systems, and winter 

conditions are changing particularly rapidly (IPCC, 2007). Differential sensitivity of organisms 

to climate change is restructuring biological communities due to disparate range and phenology 

shifts, and altered population dynamics (Chen et al., 2011a; Walther, 2010), and – where the 

proximate cause is known – many biological responses to climate change are driven by changes 

in winter conditions (e.g. Battisti et al., 2005; Crozier, 2004). To guide mitigation efforts under 

global climate change, we must identify which species or populations will be “winners” – 

benefitting from climate change, and which “losers” will be vulnerable to changes (Somero, 

2010). However, the interactions between snow and temperature that determine microclimate 
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conditions combine with divergent ecological and physiological strategies for dealing with 

winter stress, leading to variation among species in responses to winter climate change. In some 

cases, these idiosyncratic responses to winter likely underlie the failure of models to accurately 

predict species’ responses to climate change (Cook, Wolkovich & Parmesan, 2012). A limited 

understanding of organismal responses to winter climate change (and their cascading effects 

through communities and ecosystems) thus impedes efforts to predict the biological impacts of 
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relevant to their system, and to guide future research in the field of winter-focused global change 145 

biology.  This framework is designed to provide researchers with the means to navigate from 146 

change in a climate driver to a list of potential biological impacts an organism may experience, 147 

and to make a qualitative assessment of the likelihood of any terrestrial organism to suffer a 148 

given biological impact. 149 
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on the relationship between species’ traits and their responses to environmental change (e.g. 
 

Bokhorst et al., 2012a; Diamond et al., 2011; Jiguet et al., 2007; Thackeray et al., 2010), 
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however, these analyses have not been in the context of winter, nor have they synthesised across 

diverse taxa and abiotic drivers. Thus, we need a framework to identify climate-change- 

susceptibility that explicitly includes winter processes and incorporates evolution, ecology and 

physiology. An essential starting point is a synthesis of the mechanistic bases for the complex 

responses to interacting winter climate drivers across terrestrial taxa. 

Here we present a multi-component framework for predicting the impact of change in 

abiotic winter drivers on a terrestrial organism. We begin by describing the predicted changes in 

winter climate, then synthesise the mechanistic bases for the biological impacts of winter climate 

change across terrestrial taxa and regions. We use this synthesis to identify key traits that make 

species susceptible to changing winter conditions, and integrate the current state of knowledge 
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on impacts of winter climate change within the body of knowledge of growing season processes. 

We focus on traits influencing exposure and sensitivity to a particular stress, which may arise 

from a number of drivers or interactions between drivers, and through both biotic and abiotic 

processes. Our review is not meant to be exhaustive in scope, but rather to draw on 

representative examples across taxa to illustrate the main biological impacts of winter across a 

range of terrestrial organisms, to provide a starting point for readers to access the literature 
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may be getting shorter in temperate North America, where the first autumn frost has been getting 168 

later, and the last spring frost earlier, for several decades (Kunkel et al., 2004). 169 

170 

[Figure 1 here] 171 
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Mean winter air temperatures are increasing globally, but the magnitude of 

predicted winter climate change varies by region (Figure 1A; IPCC, 2007), and is subject to 

complex feedback mechanisms and interactions between snow- and ice-cover and temperature. 

While increased temperature alone decreases snow cover, climate models predict that winter 

precipitation may increase, decrease or change in timing or duration depending on the region 

(Figure 1B), which means that snow depth may stay the same or even increase in some regions, 

such as parts of the Arctic (Symon, Arris & Heal, 2005). Many organisms overwinter beneath 

snow, and snow cover is a critical mediator of soil microclimate; in particular, both reduced 

precipitation and increased mean air temperatures can increase the frequency and intensity of soil 

freeze-thaw cycles (Figures 2B, D; Brown & DeGaetano, 2011). Although the Arctic is predicted 
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to experience the most extreme winter warming, changes in snow cover and soil freezing in this 

region are less sensitive to warming than in northern temperate regions, which feature a 

shallower snowpack and remain closer to melt temperatures over winter (Henry, 2008). The 

changing physical conditions of winter can also modify winter length; for example, ‘vanishing 

winters’ are predicted for low-latitude temperate regions, where persistent snow cover and soil 

freezing become rare or completely absent (Kreyling & Henry, 2011), and the ‘average’ winter 
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can alter the occurrence of physical stresses such as ice encasement and frost heave (the uplift of 191 

soil when freezing water in soil expands), and increased rainfall over winter will increase the 192 

frequency of rain-on-snow events, which contribute to ice encasement.  Rain-on-snow events 193 

have increased in most Arctic regions, in some cases by up to 50% (ACIA, 2005). Furthermore, 194 

changes in albedo and permafrost depth can modify water retention by the soil, which can alter 195 
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In addition to changes in mean temperature and precipitation, an increased frequency of 
 

extreme weather events can increase the incidence, frequency and intensity of soil freezing, 
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either as a result of unusually early or late winter frost events, or as a result of mid-winter 

warming (or rain) events that reduce snow cover and are followed by freezing temperatures 

(Figure 2C). There has been an overall increase in the frequency of extreme thermal events in 

both summer and winter, and further increases are predicted over the next century (Easterling et 

al., 2000). Increases in extreme minimum and maximum temperatures in recent decades have 

varied among seasons and among regions, but overall there has been an increased number of 

days of extreme high minimum temperature and a reduced number of days of extreme low 

minimum temperature (Caprio, Quamme & Redmond, 2009; Easterling et al., 2000). For 

example, across Canada the number of cold nights (minimum temperatures below the 10th 

percentile for the 20th century) decreased by 15 per year between 1950 and 2003 (Vincent & 

Mekis, 2006). The frequency of both extreme high temperatures and longer mid-winter warm 

spells is expected to increase with climate change in some regions (Liu et al., 2006). 

 

 
[Figure 2 here] 

 

 

 

Aside from thermal stress, interactions between temperature and moisture during winter 
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changes), and the way these impacts combine and synergise with impacts of climate change 214 

during the growing season will determine the winners and losers under global climate change, 215 

and understanding these processes will be essential for informed management of biodiversity in a 216 

changing world. 217 

218 
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the nature of below-ground freeze-thaw (Oztas & Fayetorbay, 2003). Changes in sea or lake ice 
 

can also exacerbate terrestrial climate change, for example by increasing moisture availability, 
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leading to increased snow depth in maritime areas, or by modifying albedo and accelerating 

spring melt (Deser et al., 2010). With the emphasis on temperature effects in winter research, 

such interactions with moisture have often been overlooked, and consequently our discussion of 

these specific moisture effects remains speculative (and is often absent) throughout much of this 

review. 

 

 
III. Mechanistic bases of the biological impacts of winter climate change 

 

The primary abiotic drivers of the biological impacts of winter on terrestrial systems are 

temperature and snow cover. Temperature determines rates of biological processes, and thermal 

variability impacts the likelihood of crossing important biological thresholds (e.g. the freezing 
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point of tissues). Snow strongly modifies both the physical and the thermal environments. 

Changes in the absolute variability of these factors (as well as their timing and synchrony) can 

modify the interaction and outcomes of snow cover and temperature. In Figure 3, we describe 

how these drivers interact to determine biological impacts, and we show the direction of impact 

of changes in some of these drivers (which we elaborate below).  Ultimately, the susceptibility of 

organisms to winter (see Table 1 for a description of the traits influencing vulnerability to winter 
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expose non-feeding organisms to energetic stress (Figure 3).  For example, hibernating bats 237 

expend more energy when hibernaculum temperatures are above an optimal low temperature 238 

(Humphries et al., 2002), dormant hatchling turtles consume more energetic reserves and emerge 239 

in poorer physiological condition after warm winters (Muir et al., 2013), and energy drain means 240 

that goldenrod gall flies that overwinter in relatively warm subnivean microclimates have 241 
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[Figure 3 here] 

 

 

 

[Table 1 here] 

 

 

 

(1) Increased average winter temperatures 

 

(a) Effects on metabolic rate 

 

Increased average temperatures can arise either as a direct result of climate warming, for 

organisms whose habitats are not buffered from ambient temperatures, or from increased snow 

cover with associated thermal buffering (Figures 2A-B, Figure 3). Increased average 

temperatures can impact energy stress and phenology by increasing rates of development or 

metabolism (Figure 3). Temperature influences metabolism, and thus consumption of stored 

energy by 1) directly determining the rates of metabolic processes (such as respiration and 
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carbon fixation) in poikilotherms and 2) determining the costs of thermoregulation by 

homeotherms. Thus, increased average temperatures will increase rates of metabolism of 

poikilotherms, while for homeotherms below the thermoneutral zone, metabolic rates will 

decrease with increased average temperature due to the decreased cost of thermoregulation 

(Table 1). 

A higher metabolic rate will increase the rate of use of stored energy reserves, which can 
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A release from energetic stress as a result of winter climate change may have led to recent 260 

increases in body size of American martens, either via decreased thermoregulatory costs or 261 

increased prey availability (which will reduce energetic stress by increasing nutrient uptake; 262 

Yom-Tov, Yom-Tov & Jarrell, 2008).  Increased body size and/or condition will likely translate 263 

into fitness benefits by decreasing overwinter mortality (Hodges et al., 2006), or improving 264 
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reduced survival and fecundity compared to conspecifics overwintering in exposed, colder sites, 
 

because their metabolic rates increase exponentially with temperature (Irwin & Lee, 2003). All 
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else being equal, this energy drain is likely to be more pronounced in organisms with high 

baseline metabolic costs, and less pronounced in organisms, such as diapausing butterfly pupae, 

that substantially suppress their metabolism during winter (Table 1; e.g. Williams, Hellmann & 

Sinclair, 2012a). 

Increased rates of biological processes may permit energy gain for organisms that can 

take up nutrients during the winter. For example, increased winter temperatures increase 

photosynthetic rates and thus carbon gain in non-dormant plants as long as water is available, 

although this effect is more pronounced in woody than in herbaceous species (Ensminger, Busch 

& Hüner, 2006). Similarly, the mineralization of limiting nutrients such as nitrogen increases 

with soil temperature over winter (Sturm et al., 2005), which can increase primary productivity, 
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assuming that nutrient release and uptake are synchronised (Groffman et al., 2001). 

For homeotherms, the energetic costs of thermoregulation during winter can rival or 

exceed energetic costs of the breeding season, yet occur at a time when food availability may be 

low (Sgueo et al., 2012). An increase in average winter temperatures will thus lower metabolic 

costs of thermoregulation in homeotherms that would normally experience winter temperatures 

below the thermoneutral zone, which may alleviate energetic stress (Figure 3; Sears et al., 2009). 
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In addition to altering energy balance, increased average temperatures during winter 283 

generally promote development at times of year when it would traditionally be arrested, leading 284 

to earlier spring, and later autumn, phenology for the majority of terrestrial taxa (Figure 3; Jeong 285 

et al., 2011; Walther, 2010). These phenological shifts have been particularly pronounced in cold 286 

regions such as the Arctic (Høye et al., 2007). However, significant variation exists in 287 
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condition at the onset of the breeding season (e.g. Guillemain et al., 2008). Alternately, 
 

decreased thermoregulatory costs may increase fitness by reducing the need for pre-winter 
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energy accumulation, which could mitigate trade-offs and predation risk associated with resource 

acquisition (Gentle & Gosler, 2001). By contrast, warmer winters may lead to summer energy 

drain for species such as polar bears that feed primarily during winter and fast in the summer. 

Warmer winters reduce the length of sea ice stability, resulting in a shorter period in which polar 

bears can acquire their year’s nutrients, offsetting any thermoregulatory benefits (Robbins et al., 

2012). 

However, direct evidence for energetic and performance consequences of winter 

warming in homeotherms is scarce.  Changes in variables correlated with increased temperatures 

– such as snow cover, resource availability, and precipitation – make it difficult to isolate the 

impacts of temperature in observational studies, which form the majority of published work to 
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date. For example, although they presumably provide a thermoregulatory advantage, warm 

winters reduced maternal investment in reproduction in red deer resulting in smaller offspring. 

This effect was probably driven by increased costs of locomotion in the deeper snow 

characteristic of warm winters, rather than increased temperature per se (Post et al., 1997). Thus, 

the impact in this case was driven by an interaction among abiotic drivers (Figure 3). 

(b) Effects on development and phenology 
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By contrast, phenological synchrony with crucial resources will likely be more important 306 

than growing season or winter length in determining fitness of organisms at higher trophic levels 307 

whose resources are temporally limited. This means that the optimal phenotype will depend on 308 

the phenology of the neighbouring trophic levels (Table 1). This dependence occurs because 309 

variation in phenological shifts can cause community mismatches, wherein resources for higher 310 
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phenological plasticity within communities; for example, phenological shifts have been faster at 
 

lower trophic levels (Table 1; Both et al., 2009; Thackeray et al., 2010), and within the insects, 
 

 
10 

291 

12 

13 292 
14 
15 293 
16 
17 

18 294 
19 

20 295 
21 
22 296 
23 
24 

25 297 
26 
27 298 
28 
29 299 
30 
31 

these shifts are less pronounced in species with specialised diets or that overwinter at earlier life 

stages (Table 1; Diamond et al., 2011). 

For primary producers, or animals that are not limited by resource availability, 

performance is likely to be enhanced by maximally-advanced spring phenology and maximally- 

delayed autumn phenology (Table 1). Shortening the period of dormancy will allow greater 

resource accumulation during the growing season, and less energetic stress during winter. If this 

hypothesis is correct, performance will be enhanced in organisms whose phenology is strongly 

temperature-sensitive and which can therefore respond to increases in average temperatures by 

rapid shifts in their growing season. Indeed, the ability to respond to climate change by 

advancing spring phenology strongly enhances fitness and persistence in plants (e.g. Fridley, 
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also been recorded in pitcher plant mosquitoes, implying fitness gains from an extension of the 

length of the growing season (Bradshaw & Holzapfel, 2001), perhaps because resources are not 

temporally limited for mosquito larvae feeding on microbes in the contained pitcher plant 

ecosystem. 
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32 300 2012), presumably by lengthening the growing season and increasing resource accumulation 
33   
34 301 (Pigliucci & Marlow, 2001). A recent evolutionary shift towards later autumn phenology has 
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resources are temporally restricted, determining whether the impact will be positive or negative 329 

requires consideration of the phenological responses of organisms at lower trophic levels (Figure 330 

3, Table 1). Organisms for which seasonal timing is physiologically fixed, and that therefore 331 

have inflexible phenology, may suffer the most pronounced negative impacts of changing winter 332 

length and timing with climate change (Post & Forchhammer, 2008). 333 
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trophic levels are no longer synchronised with periods of demand. We will discuss the 
 

community-level implications in more detail below (section V), but the salient point at the 
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organismal level is that a mismatch between food demand and availability is likely to apply 

strong selective pressure on higher trophic levels to maintain synchrony with the trophic levels 

below. Supporting the hypothesis that phenology may evolve to enhance synchrony with the 

trophic level below, winter moth caterpillars have evolved a later spring hatching date in 

response to warming, which has increased synchrony with budburst of its host plant (oak), and 

presumably imparted higher fitness despite a shorter growing season (van Asch et al., 2013). 

Thus, the pattern of selection on phenology likely differs among trophic levels, with 

producers or animals for which resources are available year-round experiencing consistent 

selection for maximal spring advances and autumn delays, while higher trophic levels experience 

divergent selection pressures that depend on the responses of the trophic level immediately 
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below. This differential selection across trophic levels could explain why the responses of plant 

phenology to climate change show a strong phylogenetic signal (Willis et al., 2008), while the 

responses of insect phenology do not (Diamond et al., 2011): consistent selection on phenology 

in producers preserves the phylogenetic signal, while divergent selection on phenology at higher 

trophic levels  reduces similarities across the phylogeny. Therefore, although it is likely that 

phenological shifts will alter resource availability and thus energy stress for consumers whose 

4  
5 

6 312 
7  
8 313 
9  
 

30  
31 
32 323 
33  
34 324 
35  
 



45 
46 
47 
48 
49 
50 
51 

52 
53 
54 
55 
56 
57 
58 
59 
60 

Average temperatures will thus affect energy balance in two ways – directly, through 352 

rates of metabolism, and indirectly, through phenology and the resulting length of winter (Figure 353 

3). This introduces an important dichotomy in responses to winter climate change among 354 

dormant plants and insects: for cold-adapted species with high chilling or vernalisation 355 

requirements, increases in winter temperature will increase both overwinter energy use (by 356 
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Many plants and insects have chilling or vernalisation thresholds that must be met before 
 

post-winter development can resume.  In these cases, warmer winters can slow development, 
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leading to phenological delays (rather than advancement) in spring (e.g. Forrest & Thomson, 

2011; Luedeling et al., 2011). Most studies report an advance in spring phenology, although 

these are also intermixed with delays or lack of responses in many systems (Thackeray et al., 

2010); these delays are consistent with widespread effects of a reduction in chilling units (Cook 

et al., 2012). Phenological delays have been well-documented in meadow and steppe plant 

communities on the Tibetan Plateau, where the beginning of the growing season advanced in 

response to climate warming for the first half of a 20-year warming period, but was subsequently 

delayed despite continued climate warming (Yu, Luedeling & Xu, 2010; but see Zhang et al., 

2013). These phenological delays are consistent with insufficient vernalisation (too little 

accumulated cold exposure to end dormancy).  However, these observations could also arise 
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from the observed decrease in snow depth over this period, which may have reduced the 

insulation of the roots and, counter-intuitively, resulted in colder conditions despite warming air 

temperatures (Yu et al., 2013). There is no way to separate these proximal mechanisms from the 

available data, although this could be achieved through either autecological experiments on 

chilling requirements (e.g. Santiago et al., 2013) or experimental snow manipulation (e.g. 

Groffman et al., 2001). 
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temperatures (Figure 2).  Changes in thermal variability will impact energy balance, phenology, 375 

and cold injury through effects on metabolism, development, and freeze/thaw cycles as described 376 

below (Figure 3). Species-specific sensitivity to changes in this variability may be particularly 377 

important in determining organisms’ responses to winter climate change, although we note that 378 

changes in variability are extremely difficult to predict, even when only extreme events are 379 
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increasing metabolic rates) and winter length (by increasing development time).  These changes 
 

will amplify the deleterious effects of warming for cold-adapted species. If failure to meet 
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chilling requirements decreases the viability of populations, it may prove to be a proximate 

driver of range contractions at the equatorial range limit in some species. By contrast, for warm- 

adapted species that do not have chilling or vernalisation requirements, although warming will 

still increase overwinter energy use, it will also shorten the period of dormancy by advancing 

spring phenology. This could mitigate the direct negative effects of winter warming on 

energetics of warm-adapted species. 

 

 

(2) Altered thermal variability 

 

Winter temperatures fluctuate on multiple temporal scales, ranging from diel temperature 

fluctuations, through short term cycles associated with weather fronts, to seasonal changes 
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(Marshall & Sinclair, 2012b), and across larger scales influenced by continentality, latitude and 

topography. Snow cover will drive much of this variability, so snow cover predictions must be 

taken into account to determine likely trends in variability in each of these components (Figure 

2). Changes in the seasonal timing of snow cover will exacerbate altered timing of extreme low 
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34 370 Sinclair, 2012b).  The magnitude of these fluctuations varies spatially both with microhabitat 
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indirectly lead to range expansion if low temperatures are the primary determinant of resource 398 

availability. 399 

Changes in thermal variability can modify the timing, predictability and sequence of 400 

extreme events over winter.  Because many species have life stage-specific tolerance to winter 401 

conditions (e.g. diapause-linked cold tolerance in insects, Leather, Walters & Bale, 1993; and 402 
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considered (Easterling et al., 2000).  There are three salient components of fluctuations in winter 
 

thermal conditions: a) the intensity and regularity of extreme high and low winter temperatures; 
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b) the frequency with which temperatures cross important physical thresholds (e.g. the freezing 

point of water) or biological thresholds (e.g. thresholds for cold-induced damage); and c) the 

amplitude of thermal cycles on both diel and short-term scales (such as during storm events). 

(a) Intensity and regularity of winter extremes 

 

Extreme low temperature events can cause cold injury, and winter mortality or injury is 

an important component of demographics for many species (e.g. Aukema et al., 2008; Kanda, 

2005; Spiegel-Roy & Goldschmidt, 2008; Sutherst & Maywald, 2005). Thus, a reduction in the 

intensity or duration of extreme winter low temperatures could increase winter and post-winter 

survivorship (Table 1; e.g. Tran et al., 2007; Trotter & Shields, 2009), directly influencing the 

poleward or upper altitudinal range limit of a species (e.g. Crozier, 2004; Neuvonen, Niemelä & 
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Virtanen, 1999). However, there are cases where extreme low temperatures do not directly limit 

population persistence or geographic range. For example, the monophagous holly-leaf miner (an 

agromyzid fly) is more cold tolerant than its host plant (holly, Ilex aquifolium), and its northern 

range limit in Europe is therefore likely set by the factors that set the host range, rather than 

directly by extreme low temperatures (Klok, Chown & Gaston, 2003).  In such cases, 

amelioration of extreme low temperatures will not directly affect survival, but could still 
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consequence of sudden freeze events in late autumn before the onset of (programmed) winter 421 

cold tolerance (Bykova & Sage, 2012).  Thus, organisms that develop low temperature tolerance 422 

in a programmed fashion (e.g. in response to photoperiod), or that have delayed the onset of 423 

winter hardening as part of a phenological shift, may be more vulnerable to changes in the 424 
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aquatic overwintering in adult frogs, Tattersall & Ultsch, 2008), there is potential for changes in 
 

the seasonality of extremes to lead to mismatches between the occurrence of extreme events and 
 

 
10 

406 

12 

13 407 
14 
15 408 
16 
17 

18 409 
19 

20 410 
21 
22 411 
23 
24 

25 412 
26 
27 413 
28 
29 414 

the behavioural or physiological mechanisms that allow organisms to tolerate them. In 

particular, organisms with seasonally-programmed responses, or those which irreversibly lose 

cold tolerance during winter warm spells, will be more vulnerable to unseasonable temperature 

extremes than those with constitutively high or rapidly-modified tolerances (Table 1). For 

example, extremely warm mid-winter temperatures cause an irreversible loss of winter 

acclimatisation and the resumption of development in the emerald ash borer (Agrilus 

planipennis, Coleoptera, Buprestidae), making them susceptible to subsequent cold snaps 

(Sobek-Swant et al., 2012). Extreme warm periods in spring can also lead to breaking of 

dormancy in plants, with subsequent extreme events killing buds and preventing reproduction or 

growth the following season, as occurred in the unusual North American springs of 2007 
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(Augspurger, 2009; Gu et al., 2008) and 2010 (Hufkens et al., 2012). Indeed, a 124-year 

temperature dataset combined with observations of frost susceptibility in Illinois, USA shows 

that the frequency of damaging spring frost events has increased in recent decades (Augspurger, 

2013). At the beginning of winter, unusual extreme events before organisms have accumulated 

programmed physiological protection can also lead to damage.  For example, the grass Bromus 

rubens may be excluded from the intermountain steppe biome of western North America as a 
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expenditure during repair and recovery in thaw periods (Marshall & Sinclair, 2012a). In freeze- 443 

tolerant Rana sylvatica frogs, carbohydrate energy reserves provide both fuel for the energy 444 

expended during freezing and the cryoprotectants for survival of freezing itself. In this species, 445 

repeated freeze-thaw both depletes energy reserves and reduces cold tolerance, suggesting the 446 

possibility for substantial fitness reductions with increased freeze-thaw (Sinclair et al., 2013). 447 
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occurrence of extreme events in autumn than organisms that can use temperature as a cue to 
 

rapidly increase early winter cold hardiness (Table 1). 
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(b) Frequency of threshold-crossing events 

 

Changes in the frequency, intensity, or duration of extreme events could modify the 

frequency with which biologically-important thresholds are crossed. For example, the 0 °C 

threshold delineates the availability of liquid water and the beginning of soil freezing. Similarly, 

species-specific physiological thresholds exist, such as the temperatures at which ice formation 

and melting occur; crossing these thresholds can determine sub-lethal impacts (e.g. Marshall & 

Sinclair, 2010), survival (e.g. Régnière & Bentz, 2007) and overwinter energetics (e.g. Sinclair et 

al., 2013)  In some regions (e.g. maritime-buffered habitats in the southern hemisphere;  Chown 

et al., 2004), temperatures already hover near the 0 °C threshold: increases in mean temperatures 

will likely reduce the occurrence of freeze-thaw cycles in such environments, reducing the stress 
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of threshold-crossing events. By contrast, increasing mean temperatures (or decreasing snow 

cover, see below) may increase the incidence of freeze-thaw in northern temperate habitats, and 

thus may increase the frequency of such transitions. 

The implications of repeated freeze-thaw are not well-understood, but the impacts appear 

to be largely negative.  In invertebrates, repeated freeze-thaw can lead to a variety of deleterious 

consequences, due to both cold injury from the repeated cold exposure, and increased energy 
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most biological rate processes.  Jensen’s inequality is a mathematical property of nonlinear 466 

functions, which states that the mean of a nonlinear response variable cannot be predicted based 467 

on the mean of the driver variable alone, but requires knowledge of the variability of the driver 468 

variable and the shape of the response function (Ruel & Ayres, 1999). For example, if the 469 

response function is accelerating over the range of temperature fluctuations (as is frequently the 470 
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Repeated freeze-thaw cycles increase the risk of xylem embolism in conifers due to the 
 

expansion of gas bubbles during thawing that were formed upon freezing (Mayr, Gruber & 
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Bauer, 2003). Increased intensity or frequency of soil freeze-thaw cycles can increase the lysis of 

soil microorganisms and damage to plant roots, intensifying leaching and trace gas losses of soil 

nutrients (Groffman et al., 2001). 

In some cases, the impacts of repeated events such as freezing may not be cumulative. 

 

For example, elevated losses of soil nutrients may only occur in response to exceptionally severe 

frost soil events, and pools of frost-vulnerable materials in the soil are finite. Once the bulk of 

soil nutrients in these frost-vulnerable pools have been released, subsequent events may not 

result in further loss (Matzner & Borken, 2008). Thus, increased frequency of freeze-thaw can 

have detrimental effects in organisms for which the responses are cumulative, but for organisms 

or systems where the impact of repeated cold exposure reaches an asymptote (e.g. nutrient 
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leaching), the impacts of repeated events may be less important (Table 1). However, at this point 

too little is known about the impacts of repeated stress (or about interactions among multiple 

stressors) to allow generalities to be constructed. 

(c) Impacts of the amplitude of thermal cycles 

Increases in daily thermal variability can increase rates of metabolism and photosynthesis 

in poikilotherms (Figure 3), because of the curvilinear relationship between temperature and 
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exerts a strong selective pressure on temperature-rate relationships in ectotherms and plants, 489 

however, few studies to date have examined the impacts of daily thermal variability on 490 

overwintering organisms. 491 

For dormant organisms, thermal variability will thus be an important determinant of 492 

overwintering energy use, particularly at winter’s peripheries when temperatures are relatively 493 
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case with metabolic rate in ectotherms), the mean of the response variable will be elevated 
 

compared to its value at the mean temperature, and increasing thermal variability will further 
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increase the mean of the response variable, even without a corresponding increase in the mean 

temperature. Thus, increases in thermal variability have the potential to exacerbate the impacts of 

an increase in mean temperature on metabolism (Ruel & Ayres, 1999). Additionally, thermal 

performance curves are asymmetric (fitness rapidly declines above the thermal optimum; 

Angilletta, 2009), and thus Jensen’s inequality means that the impact of changes in temperature 

will also be asymmetric: temperatures above the thermal optimum will reduce fitness far more 

than temperatures an equal amount below the thermal optimum. 

This effect of Jensen’s inequality can be exacerbated or mitigated by modifying the shape 

of the rate-temperature relationship: a steeper curve (i.e. higher temperature sensitivity) will lead 

to a more pronounced impact (Ruel & Ayres, 1999), suggesting that organisms with high 
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temperature sensitivity or thermal optima that are close to environmental temperatures will 

experience greater impacts of changes in thermal variability (Table 1; Foden et al., 2013). 

Exacerbated thermal variability will therefore allow potentially-active ectotherms to take better 

advantage of warm spells during winter fluctuations. However, lower thermal sensitivity will 

reduce vulnerability to thermal variation, for example in energy-conserving overwintering 

ectotherms (Williams et al., 2012b).  Thus, short-term (e.g. daily) thermal variability likely 
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programmed nature of the response.  However, evolutionary changes in the induction of 512 

dormancy as a result of climate change have been observed in a photoperiod-cued pitcher plant 513 

mosquito (Bradshaw & Holzapfel, 2001). Similarly, butterfly larvae show state-dependent 514 

responses to photoperiod, allowing facultative shifts in dormancy onset and behaviour both 515 

before and after dormancy to buffer the impact of reduced growth capacity at higher latitudes 516 
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warm and variable. In this context, seasonal timing will be a critical determinant of a species’ 
 

susceptibility to overwinter energy drain resulting from alterations to thermal variability. 
 

 
10 

497 

12 

13 498 
14 
15 499 
16 
17 

18 500 
19 

20 501 
21 
22 502 
23 
24 

25 503 
26 
27 504 
28 
29 505 

Species that enter dormancy early in the autumn will experience significant energy drain as a 

result of delayed winter onset, and an increase in thermal variability during autumn will thus 

exacerbate this energy drain because of Jensen’s inequality (e.g. Sinclair et al., 2013; Williams et 

al., 2012b). By contrast, species with delayed spring emergence, including insects such as 

Rhagoletis pomonella that infest summer-fruiting trees (Feder, Hunt & Bush, 1993), will likely 

be more susceptible to earlier, more variable, and warmer springs. By contrast, increased 

buffering (e.g. due to longer snowpack persistence; Decker et al., 2003) might reduce variability, 

mitigating the impact of the longer post-winter period. 

Flexibility of the thermal sensitivity of biological processes or phenology will therefore 

be a key determinant of the outcome of changing thermal variability during winter and its 
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associated dormancy (Figure 4). Suppression of thermal sensitivity of metabolism mitigates the 

impact of increased thermal variability (Williams et al., 2012b). In herbivores, for which entry 

into dormancy is likely mediated by a decline in host plant quality (Prior et al., 2009), such 

plasticity is essential, but may not fully compensate for increased autumn variability (Williams et 

al., 2012b).  In many species, the onset of dormancy is controlled hormonally and entrained to 

photoperiod (Tauber et al., 1986), apparently reducing the capacity for flexibility because of the 
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condition and survival of organisms that overwinter in these environments, and as a result, 535 

changes in snow cover with climate change can result in many different biological impacts 536 

(summarised in Table 2).  Because snow is an effective insulator, reduced snow cover can 537 

expose soil systems to more extreme low temperatures (Brown & DeGaetano, 2011), described 538 

by Groffman et al. (2001) as ‘colder soils in a warmer world’, which in turn can increase 539 
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(Gotthard, Nylin & Wiklund, 1999; Gotthard, Nylin & Wiklund, 2000).  It is conceivable that 
 

such plasticity could also act to mitigate the impacts of winter energy drain. 
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[Figure 4 here] 

 

 

 

Overall, while it is clear that the frequency, timing and amplitude of temperature 

variability dictate the severity of winter’s effects on organisms, the examples presented above 

derive primarily from studies on insects. For organisms with more resilient or resistant 

overwintering stages (e.g. plant seeds) these effects may be less severe. The ultimate influence 

of extreme winter temperature events on populations, communities and ecosystems will be a 

function of both the severity and frequency of these events, and extremely severe events may 

only occur infrequently. However, extreme events that lead to threshold changes in community 

trajectories will remain influential over the longer term (Kreyling, Jentsch & Beierkuhnlein, 

2011). 

 

 

(3) Changing snow cover 

The strong influence of snow cover on the soil and subnivean microclimate (Figure 2; 

Decker et al., 2003; Henry, 2008; Pauli et al., 2013) has important consequences for the 
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melts can increase soil exposure to freeze-thaw with consequent damage to plants and soil fauna 558 

(Bokhorst et al., 2011; Bokhorst et al., 2012a), and these melts also can lead to ice encasement 559 

and subsequent anoxia, further stressing soil organisms (Coulson et al., 2000).  Despite the 560 

potential benefits of snow cover for frost protection, the mild subnivean microclimate can be 561 

energetically costly for organisms, because overwinter temperatures determines their energy 562 
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mortality for organisms overwintering in or on the soil. Beetles overwintering in the soil beneath 
 

snow in the US prairies had higher survival than those that overwintered in soil with snow 
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removed, but this difference in survival was only seen in relatively cold winters (Joshi, Olson & 

Carey, 2009), and the number of times per month that New Zealand alpine cockroaches were 

predicted to freeze and thaw ranged from zero to more than 20, depending on snow cover 

(Sinclair, 2001). Lemming nest density was positively correlated with snow depth when snow 

cover was experimentally manipulated, presumably because the deep, dry snow layer buffered 

the small mammals from extreme temperatures (Reid et al., 2012). 

 

 

[Table 2 here] 

 

 

 

Thermal buffering by snow leads to a counterintuitive observation – organisms from very 
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cold and snowy regions are frequently less cold tolerant than those from regions with a shallower 

and less-persistent snow-pack. For example, despite the expectation that frost tolerance increases 

with increasing latitude within species, northern (snow-insulated) ecotypes of temperate grasses 

have low frost tolerance relative to their conspecific, southern ecotypes that experience less snow 

cover (Dionne et al., 2001).  Increased soil freezing as a consequence of decreased snow cover 

might therefore be particularly damaging for organisms adapted to snowy winters. Mid-winter 
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complex: declining snow cover in Canada is associated with decreased wolverine population 581 

growth rate; the causal factors for this decline likely include reduced denning sites, decreased 582 

prey success and reduced snow-related mortality of the ungulates upon whose carcasses 583 

wolverines scavenge (Brodie & Post, 2010).  Snow quality, determined more-or-less directly by 584 

temperature, also determines the winter performance of many organisms, as changes in the 585 
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consumption (Figure 3).  For example, gall flies overwintering below the snow have increased 
 

energy consumption compared to those above the snow (Irwin & Lee, 2003). Snow cover thus 
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strongly influences levels of energy stress and cold injury indirectly, through its effects on 

temperature (Figure 3), and changes in local patterns of snow cover therefore have the potential 

to alter habitat suitability on a very small scale. 

Snow also impacts organisms directly by modifying the physical environment: both the 

quantity and the quality of snow can have profound effects, particularly on the biology of winter- 

active mammals. While the effects of changing snow cover can be assessed experimentally for 

sessile or small organisms (e.g. Groffman et al., 2001; Reid et al., 2012), the limited spatial scale 

of most snow manipulation experiments makes it difficult to assess snow depth effects on large 

or highly mobile animals under controlled conditions. Nevertheless, observational studies can be 

used to correlate biological responses to interannual variation in snow depth.  For example, 
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wolves form larger packs in response to deeper snow (Post et al., 1999), but increased snow 

depth also reduces mobility of their deer prey (Fuller, 1991). Reduced snow cover may also 

increase resource availability for winter-active predators and browsers by improving access to 

food (Figure 3; Martin & Maron, 2012) – which necessarily means that decreased snow also 

increases predation risk for small mammals which have less protection from predators and 

extreme temperatures (Yoccoz & Ims, 1999).  However, the impacts of changing snow cover are 
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abundance of montane plants is increased after delayed snow melt, due to decreased frost 604 

damage in spring (Inouye, 2008). 605 

Mid-winter snowmelt caused by extreme events (best-studied because of their effect on 606 

hydrology; e.g. Kurian, Lautz & Mitchell, 2013) will not only affect overwinter soil temperatures 607 

(see above), but also provide liquid water for plants and animals that might otherwise suffer from 608 
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density of snow modifies its insulative properties and affect locomotion, while ice layers can 
 

modify access through the snowpack.  For example, increased frequency of rain on snow events, 
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and subsequent ice-up, blocks access to food for herbivores such as reindeer (Hansen et al., 

2011) and small mammals (Kausrud et al., 2008; Korslund & Steen, 2006). 

The timing of snow lie is also critical for many organisms, but the direction of impact 

strongly depends on species’ traits. Early snowmelt can have positive effects for large browsers 

such as reindeer, which produce calves with increased body mass in the autumn following an 

early spring snowmelt (Pettorelli et al., 2005). However,  if early snow melt causes the 

resumption of activity before resources are available or interrupts winter feeding opportunities, 

the effects can be detrimental: early snowmelt can result in food scarcity for hibernating 

mammals, such as marmots, that emerge early in response to warmer air temperatures, but before 

the spring flush of plant growth (Inouye et al., 2000), and early ice breakup increases mortality in 
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polar bear by reducing the length of the winter feeding season and increasing the length of the 

summer fast (Regehr et al., 2007). By contrast, increased spring snowstorm activity with climate 

change in some regions can lead to delayed snowmelt, delaying the emergence of ground 

squirrels and reducing their fitness by reducing the length of the active season (Lane et al., 

2012). However, organisms that overwinter in subnivean spaces in very cold environments may 

benefit from an extension to the protective insulation of snow – for example, peak floral 
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inferred.  For example, winter energy use can determine adult body size in butterflies (Williams 628 

et al., 2012a), and the clear size-fecundity relationship in female butterflies (Boggs & Freeman, 629 

2005) implies a fitness consequence of this winter effect.  The resilience of organisms to winter 630 

energetic stress can also be determined by post-winter processes (Table 1), with resilience 631 

decreased in organisms with limited opportunities for post-winter resource acquisition (Breed, 632 
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a water deficit, such as hibernating mammals (e.g. Ben-Hamo et al., 2013). Conversely, 
 

increased free water may increase rates of heat loss and risk of flooding, decreasing survival of 
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small mammals (Kausrud et al., 2008). In Greenland, warmer summers result in the 

accumulation of cold meltwater, delaying flowering and shortening the flowering period of 

several angiosperms (Høye et al., 2013). These roles of liquid water in determining winter 

physiology and spring phenology in terrestrial systems during winter have received little 

attention, so the trade-off of negative and positive effects for organisms remains a matter for 

speculation. 

 

 
IV. Links between winter and summer responses to climate change 

The condition of organisms emerging from the winter will determine their performance 

during the growing season, and similarly their growing season performance will determine their 

condition going into the winter and subsequent winter performance (Figure 5). Taking a cross- 
 

 

 
35 

36 623 
37 

38 624 
39 
40 625 
41 
42 

43 626 
44 

45 627 

seasonal perspective will therefore be necessary to identify negative impacts of climate change. 

For example, advanced spring phenology and increased spring abundance of a perennial herb in 

Britain resulted from winter warming, but this was tempered by a decrease in reproductive 

output by those plants (Fox et al., 1999). Similarly, early snow melt increased survival in 

conifers, but at the expense of growth rates (Barbeito et al., 2012).  Where data on post-winter 

performance are lacking, links from winter condition to the growing season may often be 
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winter variables that affect an organism are represented by ‘Winter’, while ‘Mortality’, 652 

‘Resources’ and ‘Sub-lethal damage’ represent the outcomes of the biological processes and 653 

stresses in Figure 3. Figure 5 can be used in two ways.  First, it can be used in conjunction with 654 

our framework describing the impacts of winter on a species’ biology (Figure 3, Table 1) to 655 
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Stichter & Crone, 2013), or for which juvenile-derived reserves are essential for reproduction 

(Irwin & Lee, 2003). 

 

 

[Figure 5 here] 

 

 

 

If responses to climate change improve pre-winter condition, winter performance may be 

enhanced. For example sub-alpine yellow-bellied marmots have advanced their phenology in 

response to recent climate change, which allows increased resource accumulation and growth 

and, consequently, increased overwinter survival and population growth rates (Ozgul et al., 

2010). Presumably, such positive impacts of longer growing seasons will help to buffer negative 

impacts of winter climate change, although few data exist to address this hypothesis. However, 

some changes to growing season physiology may have negative effects on winter performance. 
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For example, damselfly larvae that grow rapidly during the growing season do so at the expense 

of winter cold tolerance (Stoks & De Block, 2011), although this trade-off was not apparent in 

butterflies (Karl et al., 2013), underlining the likelihood that the relationship between summer 

and winter will be complex and species-specific. 

In Figure 5, we conceptualise the potential biological impacts of winter climate change 

 

on a species in an inter-seasonal context.  We assume that reproduction and growth occur outside 
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climate change, in the form of decreases in winter mortality, may be balanced or cancelled out by 674 

a corresponding increase in intra-specific competition. For example, early snow-melt and 675 

increased availability of forage decreased overwinter mortality in reindeer, which increased 676 

competition and slowed population growth (Tyler, Forchhammer & Øritsland, 2008). Winter 677 

climate change can affect population dynamics both directly and indirectly via different 678 
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identify areas in which further research is required.  Second, by determining the causal links and 
 

strengths of the relationships shown, it can be used to determine the relative importance of 
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different aspects of winter in determining how a species’ vulnerability to overwinter conditions 

plays out in the growing season and affects fitness. 

The relationships between post-winter condition, growing season performance (and 

reproduction) and pre-winter condition are already known for many species, thanks to the 

preponderance of growing-season studies. Winter mortality has been well-explored for many 

species (Aars & Ims, 2002; Hodges et al., 2006; Roland & Matter, 2013; Stahl et al., 2006), but 

data are lacking regarding the sub-lethal impacts of winter, mediated through resource 

consumption and damage, and the effects of these sub-lethal impacts on growing season 

performance. Moving forward, the direct relationships between winter conditions and growing 

season performance need to be explored further across many taxa (see Kreyling (2010) for a 

plant-focused discussion of this point), as does the extent to which vulnerability to summer 

changes may exacerbate or negate vulnerability to winter changes. 

 

 
V. Scaling up to populations, communities, and ecosystems 

The direct effects of winter climate change on individual organisms will combine and 

synergise with competitive interactions to influence demography. Positive impacts of winter 
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changes in understory composition and browsing could depress soil respiration rates (Persson et 697 

al., 2009). Community interactions can modify and even reverse the effects of climate change on 698 

individual species.  For example, winter-induced changes in herbivory can prevent shrub 699 

expansion in Arctic tundra (Olofsson et al., 2009).  In ecosystems where predator populations are 700 

subject to bottom-up control due to resource limitation, negative effects of winter climate change 701 
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mechanisms.  For example, in an alpine butterfly, delayed snow melt directly increased 
 

population growth by increasing recruitment the subsequent year, and indirectly increased 
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population growth by increasing the peak abundance of the butterfly’s floral resources (Boggs & 

Inouye, 2012). Climate change-related shifts in population densities and processes at the leading 

and retracting range edges (Hill, Griffiths & Thomas, 2011) lead to well-documented poleward 

range shifts, especially in butterflies (Chen et al., 2011b; Hill et al., 2002; Parmesan et al., 1999). 

In some cases, climate-driven range shifts have been directly attributed to changes in winter 

climate (Berger et al., 2007; Crozier, 2004). Conversely, differential susceptibility to winter 

climate change among populations could also reduce performance in peripheral populations 

(Pelini et al., 2009), leading to range contractions in some species. 

At community scales, complex multi-trophic interactions can drive the effects of climate 

change on individual species. Alterations to the abundance of plants or animals as a result of 
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changes in mortality or phenology can be propagated through communities via consumer- 

resource interactions. For example, in a deciduous forest, increased winter herbivory by elk as a 

result of decreased snow cover depresses plant and associated bird communities throughout the 

year (Martin & Maron, 2012). A deeper snow pack in the Great Lakes region of the USA 

increases hunting success of wolves leading to reduced moose populations, which releases fir 

trees from heavy browsing and increases the fir understory (Post et al., 1999).  In turn, these 

4  
5  
6 680 
7  
8 681 
9  
 

30  
31 
32 691 
33  
34 692 
35  
 



45 
46 
47 
48 
49 
50 
51 

52 
53 
54 
55 
56 
57 
58 
59 
60 

mortality and lower calf production (Post & Forchhammer, 2008).  By contrast, climate change 720 

has actually improved host plant-herbivore synchrony in a sub-Arctic moth-birch system. 721 

Previously, birch bud burst occurred too early for moth larvae to feed on young (palatable) 722 

leaves.  However, moth phenology has advanced more rapidly than birch in response to shorter 723 

winters, which has improved synchrony and enabled moth larvae to exploit this new resource 724 
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on prey may extend to higher trophic levels. Winter climate change has decreased plant 
 

production and forage quality, leading to declines in herbivore fitness (Awmack & Leather, 
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2002; Bokhorst et al., 2012b), and the collapse of Arctic lemming population cycles has 

decreased the population growth of several predator species (Gilg, Sittler & Hanski, 2009; 

Schmidt et al., 2012). Conversely, direct impacts of winter climate change on overwintering 

carnivores may lessen predation pressure on prey species, with community-wide consequences 

(Estes et al., 2011), although few examples of such climate-induced trophic cascades in a winter 

context – perhaps because such studies have focused on Arctic and boreal habitats. These multi- 

trophic interactions make it imperative to predict the direct impacts of winter climate change on 

species that exert strong top-down or bottom-up control within their communities, perhaps aiding 

to identify focal species for winter study. 

As we have shown, winter affects different species in different ways.  Thus, dissimilar 
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responses to winter climate change by different species can exacerbate phenological mismatches, 

reconfiguring community interactions (Van der Putten, Macel & Visser, 2010). For example, 

winter climate change has led to earlier spring leaf-out and caterpillar emergence in European 

oak forests, decreasing synchrony of (caterpillar) food supply with peak feeding times in 

passerine birds (Both et al., 2009). Similarly, the plant growing season has advanced faster than 

the timing of the caribou migration to Arctic breeding grounds, resulting in increasing calf 
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snow accumulation is projected to occur over much of the Northern Hemisphere, with >80 % of 743 

years below the baseline minimum in some areas by 2080–2099 (Diffenbaugh & Field, 2013). 744 

The resulting decreases in melt water in spring, coupled with increased evapotranspiration and 745 

decreased summer rainfall in some regions, will increase summer drought severity. 746 
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(Jepsen et al., 2011). In extreme cases such as irruptive outbreaks of the (winter-limited) 
 

mountain pine beetle, winter climate change has contributed to altering landscape-level 
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processes: beetle infestation modifies tree survival and species composition, ultimately 

converting forests in British Columbia from net carbon sinks to a source of carbon (Kurz et al., 

2008). 

The links addressed in Figure 5 can be extended to processes that occur at the community 

or ecosystem scale.  In doing so, additional links must be added to account for species 

interactions such as competition, and ecosystem processes that determine seasonal changes in 

resource availability. For example, Figure 6 (based on Sturm et al., 2005) describes potential 

feedbacks between changes in snow cover, nutrient availability and plant species composition in 

the Arctic. In this scenario, climate warming is expected to promote shrub expansion into 

graminoid communities, increasing the trapping of snow.  Increased depth and duration of the 
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snowpack can then increase nitrogen availability over winter by increasing soil microbial 

activity, and because the shrub canopy is above the snow layer, bud-burst and photosynthesis can 

occur earlier than in the low-statured graminoids, allowing the shrubs to access late-winter 

nitrogen pulses. Decreased nitrogen availability over summer, enhanced by increases in low 

quality, woody shrub litter, coupled with increased shading by shrubs, further reduce the 

competitive abilities of the graminoids. In contrast to the latter example, extremely low spring 
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climate, and those determining sensitivity to those changes. In their framework, exposure was 766 

determined by the degree of regional climate change, filtered through microclimatic buffering 767 

due to habitat choice. For example, if temperatures are rising, a species that does not have the 768 

capacity to change microhabitat choice or alter thermoregulatory behaviour will be exposed to an 769 

increase in temperature, whereas a species that can buffer these regional changes will not 770 
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As we have demonstrated in this section, understanding the interactions between climate 
 

and biotic processes is essential for predicting how ecosystems will respond to climatic warming 
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(Blois et al., 2013). Moving forward, integrating the responses of organisms across entire 

ecosystems, while taking into account linkages between winter and summer responses to climate 

change, and differing capacity to evolve, is a daunting task. This task will be facilitated by a 

priori identification of the key vulnerabilities to winter climate change, a process which is 

described in the following section. 

 
VI. Predicting vulnerability to winter climate change 

 

It is clear that winter is an important driver of biological processes and organismal 

fitness, and that winter climate change has the potential to significantly impact individuals, 

populations, community interactions and ecosystem processes.  However, if a goal of global 

change research is to offer predictive power to facilitate risk assessments and management 
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decisions, then it is necessary to identify which species and processes will be vulnerable to 

changing winters. 

Williams et al. (2008) proposed an integrative framework to identify and prioritise 

species that are vulnerable to climate change, where vulnerability was defined as susceptibility of 

a system to change – in most of our cases, the primary ‘system’ we consider is an individual or 

population.  The authors distinguished between factors determining exposure to a change in 
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789 

as a framework, it is possible not only to identify the potential exposure to stress resulting from 790 

changes in the drivers, but because it makes clear (some of) the causal links between the drivers 791 

and organismal fitness, it allows the identification of end traits – and the design of simple 792 

experiments – that facilitate an assessment of the susceptibility of organisms to changes in those 793 
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(Kearney, Shine & Porter, 2009). In the context of winter, the three primary drivers of changing 
 

snow cover, thermal variability, and shifts in mean temperature interact with overwintering 
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biology to modify the stresses that will be experienced: thus we must understand the causal 

relationships between the drivers that determine exposure to winter climate change. Figure 3 can 

be used as a framework for determining exposure to stress resulting from winter climate change, 

although such predictions are still dependent on predicting changes in the drivers from climate 

data and models – a major challenge given the discrepancy between the size of organisms and 

the scale at which climate data are collected (Potter, Woods & Pincebourde, 2013), and the lack 

of information about the timeframes over which selection will modify winter phenology and 

physiology. 

Assuming that we can accurately assess an organism’s exposure to climate change, the 

next step is to determine whether it will be sensitive (i.e. experience negative impacts). Williams 
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et al. (2008) suggest that sensitivity is governed by intrinsic ecological, physiological or genetic 

traits of the focal species that determine levels of resilience (the ability of a species to survive 

and recover from a negative impact) and adaptive capacity (the capacity for plastic or 

evolutionary changes to reduce negative impacts).  Related to the capacity for adaptation, we 

note that estimates of the strength of selection encountered by organisms in winter environments 

are an essential component of a predictive framework, but to date few studies have measured 
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Table 1, and are grouped according to energy balance (e.g. thermoregulatory strategy, 812 

metabolism), phenology (e.g. chilling requirements, overwintering stage), cold injury (e.g. cold 813 

tolerance, response to repeated stress), water balance and predation (e.g. trophic position, 814 

predatory avoidance strategies). 815 
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drivers.  For example, there are clear links between overwintering temperature and energy 
 

consumption for many overwintering ectotherms.  It is thus possible to design a simple 
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experiment (e.g. keep overwintering stages of several species at several temperatures; Williams 

et al., 2012a) to compare susceptibility of energy use to changes in temperature. Similarly, 

experimental designs are now well established for determining impacts of repeated stress 

exposure (Marshall & Sinclair, 2012a), addressing the impacts of shifting variability or snow 

cover – although the results of such experiments are not necessarily easy to interpret. For 

example, repeated freezing in overwintering caterpillars saves energy (Marshall & Sinclair, 

2012b) but has other sub-lethal impacts (Marshall & Sinclair, 2011). Thus, a reductionist 

approach can be used to identify or rule out susceptibility to certain drivers of climate change 

relatively rapidly, but more complex experiments are necessary to understand interactions among 

drivers. 
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More generally, it is possible to identify some of the general traits that render individuals 

or populations of a species vulnerable (or resilient) to winter climate change (Table 1). As with 

all sensitivity to climate change, species that have high rates of reproduction and short lifecycles, 

large range sizes (but not large spatial scales of operation), and high dispersal will be less 

vulnerable to change (Williams et al., 2008). However, the links in Figure 3 allow the 

identification of winter-specific traits that lead to vulnerability; some of these are outlined in 
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patterns describing vulnerability to negative impacts. To integrate this information we must 834 

combine theoretical and empirical approaches and synthesise across taxa, levels of organisation, 835 

and climate drivers. 836 

For theorists, the challenge lies in incorporating winter into models that tend to have 837 

forms and parameters associated with growth and assimilation, rather than dormancy and 838 

consumption (although there is scope for the latter in Dynamic Energy Budget models; Sousa et 839 
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Despite extensive evidence from individual cases for the importance of trophic dynamics 
 

in determining overwinter responses, they remain difficult to predict. Community-level 
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experiments are inherently complex and limited in spatial and temporal scope, while the use of 

population-based data to construct dynamic models of communities is typically inadequate for 

predicting responses to novel combinations of drivers, even in the growing season (Abrams, 

2001). This complexity is intensified when the relative performances of organisms both over 

summer and winter must be taken into account, but we propose that the species-based a priori 

approach, based on the drivers and vulnerabilities identified in Table 1 and Figure 3 can be used 

to identify key impacts of winter. If combined with an understanding of the community 

interactions in a system, it is possible to at least identify potential responses to winter climate 

change at the community level. 

 

 
VII. A call to further integrate winter into climate change research 

Winter imposes a severe selective pressure that determines fitness, drives many 

ecological processes, and shapes the evolution of organisms.  The pressing need to understand 

the mechanisms underlying biological responses to climate change, coupled with the rapid 

changes in winter conditions, together provide a strong imperative to unravel the complexities of 

responses to winter at the individual, community, and ecosystem scales, and to determine general 
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miles, and minutes rather than months. A lofty goal for mechanistic studies of overwintering 858 

biology is the development of general principles that describe how organisms respond to winter, 859 

and the ability to predict – a priori – which species will be most vulnerable to winter climate 860 

change. To accomplish this we must extend more laboratory studies into the field, which will 861 

require methodological limitations and biases to be overcome.  For example, methods for 862 
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al., 2010).  Mechanistic models of winter biology exist for some species, and the form of some of 
 

these models may be incorporated into existing frameworks, and potentially expanded to include 
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additional aspects of winter climate change. For example, Régnière and Bentz (2007) have 

provided a robust model of the dynamic shifts in cold tolerance of overwintering mountain pine 

beetles, although this model does not incorporate any sub-lethal impacts of cold exposure. 

Because it is likely that the existing relationships between climate variables will be disrupted 

(Jackson et al., 2009; see also Figure 2), functional or phylogenetic approaches may be powerful 

alternatives to existing niche models (Buckley & Kingsolver, 2012) by using existing studies to 

infer potential impacts of combinations of winter drivers that may be novel for a given species or 

population. However, data regarding the effects of winter conditions on fitness is sparse and 

diffuse, and not necessarily in a model-ready format. Trait databases such as iPlant (Goff et al., 

2011) may provide a source of such information, but theorists and empiricists will need to work 
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together to identify the key traits that will inform vulnerability to winter climate change, using 

approaches similar to those outlined in Figure 3 and Table 1. 

To inform this theoretical effort, empiricists need to collect more data on the performance 

and, ultimately, fitness consequences of projected changes in winter climate drivers. Such an 

understanding requires integration across levels of organisation and from regional to single- 

organism scales; this entails a shift in focus to populations rather than species, metres rather than 
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VIII. Conclusions 881 

(1) Overwintering biology is a key component of the biology of organisms that live in 882 

temperate, polar and alpine habitats, and has driven the evolution of extreme 883 

phenotypes such as dormancy and migration. 884 
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simulating winter climate change in the field, such as snow fences, snow removal, heated soil 
 

cables and overhead heaters, are often plagued by artifacts or scaling limitations (Shen & Harte, 
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2000). Similarly, there is a need to expand the geographic and taxonomic focus of winter 

biology. There has been a disproportionate focus on relatively cold environments with long 

winters (such as the high arctic) relative to temperate systems (Kreyling, 2010), and there have 

also been asymmetries in research between the northern and southern hemispheres, which may 

also bias our understanding of the key aspects of winter (Chown et al., 2004). Throughout this 

review, it is apparent that the bulk of the literature on some broadly-applicable topics is 

constrained to certain systems; for example, many studies of winter climate change at the 

community and population levels have been conducted on arctic mammals, but few on temperate 

insects, whereas a disproportionate amount of research has been conducted on the physiological 

responses to freezing of temperate insects and crop plants.  Finally, there is a need for substantial 
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effort documenting fall and winter events complementing the successful and ongoing 

documentation of changes in spring phenology and growing season biology. We particularly 

encourage a concerted effort to expand existing, well-characterised, systems into the winter to 

develop a more holistic view of how organisms, communities, and ecosystems will respond to 

climate change. 
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(2) The main abiotic drivers of biological responses to winter are the mean and 

variability of air temperatures and the extent and timing of snow cover. All of these 

are being affected by climate change in a regionally-specific manner. 

(3) Understanding the links between abiotic change and organismal performance is 

important for determining organismal vulnerability to climate change. This will 

require a mechanistic and integrative approach. 

(4) Responses to winter conditions are not isolated from growing season responses to 

climate.  Therefore it is important to investigate the impacts of winter on 

performance, fitness and biotic interactions in the context of growing season biology. 

We suggest that an opportunity exists to extend existing long-term studies of growing 

season biology to incorporate the effects of winter. 

(5) At the population and community levels, inter- and intra-specific interactions strongly 
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influence responses to winter climate change. Impacts on individual species will 

propagate through ecosystems, and the role of winter in modifying these interactions 

must be considered when predicting the ecological impacts of climate change. 
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Figure 3 - A blueprint for predicting the biological impacts of winter climate change on 1404 

terrestrial organisms. Abiotic drivers of winter climate change (black circles) alter physiological, 1405 

biotic or abiotic processes (white, light grey and white rectangles respectively) leading to 1406 
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Figure Captions 

 

Figure 1 - Projected winter climate change in terrestrial systems over the next century. Predicted 

January (northern hemisphere) or July (southern hemisphere) differences between 2090-2099 

and 2000-2009 in (A) mean surface air temperature and (B) total precipitation. Tropical regions 

(23°S to 23°N) that do not experience winter are in grey. Predictions are from the HADCM3 

model, A2 scenario (Lowe, 2005); means for each cell over the early time period were subtracted 

from the means for the late time period to give projected changes. 

 

 

Figure 2 – Examples of the effects of changes in air temperature and snowfall on snow depth 

and soil temperature during winter. (A) Current climate. Note that snow cover buffers soil 

temperatures. (B) increased mean air temperature results in increased soil freeze-thaw cycles 

during a mid-winter melt because the soils become exposed to warm air temperatures during the 

day and freezing air temperatures at night. (C) scenarios whereby increased air temperature 

variability modifies soil freezing. In late fall, an early frost exposes soil to cold air prior to 

development of the snowpack. Warm spells in either mid-winter or early spring melt the 

snowpack, leaving soils vulnerable to subsequent drops in air temperature. Finally, snow melt 

can be accelerated by increased diel air temperature variability.  (D) reduced winter precipitation 

leads to increased soil freeze-thaw cycles following a mid-winter melt and during spring melt as 
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other life histories.  The black diamond ‘winter’ represents the abiotic conditions that are 1425 

experienced during winter, and the three white boxes are the outcomes of biological processes 1426 

and stresses described in Figure 1 and Table 1.  These processes affect post-winter condition, 1427 

which affects growing season performance (all growing season processes are combined in this 1428 

framework), which in turn determines the pre-winter condition of organisms.  The strength and 1429 
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biological impacts (white hexagons). Signs on arrows indicate the direction of the relationship, 

and can be navigated with reference to Table 1 and examples in the text. The dotted line 

indicates that decreases in snow and ice occur in response to increased macroclimatic 

temperatures; all other relationships occur within organisms’ microclimates. 

 

 

Figure 4 - The relationship between winter energy use and phenology for dormant organisms. A 

longer winter (early onset of or later exit from dormancy) results in higher energy use. Winter 

climate change is increasing total energy use through increases in means or variability of 

temperatures (effectively elevating the entire surface, not shown), and organisms have responded 

to this in three ways: A) increasing the degree of metabolic suppression over winter, and thus 

lowering energy costs (e.g. the duskywing caterpillar Erynnis propertius; Williams et al., 2012b); 

B) delaying the onset of entry into dormancy, thus reducing the period of pre-winter energy drain 

(e.g. the pitcher plant mosquito Wyeomyia smithii; Bradshaw & Holzapfel, 2001); and C) 

advancing the date of exit from dormancy, to take advantage of opportunities to feed and reduce 

winter energy drain (e.g. the yellow-bellied marmot, Marmota flaviventris; Ozgul et al., 2010). 

 

Figure 5 – Integrating winter processes into growing season biology. This assumes that 

reproduction (which determines fitness) occurs in the growing season, but could be modified for 
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importance of these links will depend on life history and the extent to which summer and winter 

stresses exacerbate or negate one another. 

 

 

Figure 6 – Example of how adding links to account for species interactions and ecosystem 

processes that determine seasonal changes in resource availability can extend the integration of 

winter processes into growing season biology to the ecosystem scale. This example, simplified 

from(based on Sturm et al., 2005), describes how climate warming may drive potential feedbacks 

between changes in snow cover, nutrient availability and plant species composition in the Arctic. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Table 1 – Organismal traits influencing vulnerability to winter climate change. Vulnerability is a product of traits that increase stress 

exposure in response to a climate driver and traits that increase sensitivity to this stress, with sensitivity determined by a lack of either 

resilience or adaptive potential. Climate drivers (indicated in italics, and with reference to the text and Figure 3) are increased average 

temperatures (AvT), thermal variability (subdivided here into increased daily thermal variability (DV), extreme temperatures (ExT) and 

increased freeze-thaw cycles (F/T)), increased snow (S+) and decreased snow (S-). 
 

Traits determining stress exposure Traits determining sensitivity to stress Proximal cause of 

vulnerability 
13    

14 Energy balance 
15 

16 Thermoregulatory strategy (AvT, DV) 

17 • poikilotherms > homeotherms 
18 
19 Energy intake and availability (AvT, DV, S+) 
20 
21 • no energy intake/limited food available 
22 

23 > winter energy uptake 
24 

25 Metabolic suppression (AvT, DV, S+) 

26 • low > high suppression 

28 Metabolic plasticity (AvT, DV) 
29 
30 • low > high plasticity 
31 

32 Trophic position (S+) 
33 

34 • predator > prey 

35 • heterotroph > autotroph 
37 Habitat (S-) 
38 
39 • subnivean > supranivean 

 
Reproductive strategy (AvT, DV) 

• capital breeding > income 

Energy storage(AvT, DV) 

• low > high pre-winter energy stores 

Energetic recovery (AvT, DV) 

• no post-winter feeding > feeds post- 

winter 

Feeding strategy (S+, S-) 

• specialist > generalist 

 
• Consumption of finite 

energy reserves (AvT, 

DV) 

• Decreased resource 

availability 

• Increased cost of 

locomotion (S+) 

• Decreased food access 

(S+) 

40    
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Table 1 (continued) 
4 
5 Traits determining stress exposure Traits determining sensitivity to stress Proximal cause of 
6 
7 vulnerability 
8    

9 
10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 1474 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Phenology 

Chilling or vernalization requirements (AvT) 

• obligate > facultative dormancy 

• chilling requirement > non-thermal 

cues 

Habitat requirements (S-) 

• snow dependent > not snow dependent 

 
Trophic level (AvT) 

• consumers > primary producers 

Diet breadth (AvT) 

• low > high 

Overwintering stage (AvT) 

• early in lifecycle > late in lifecycle 

Genetic variation in reaction norms (AvT) 

• low variation > high 

 
• Reduction in length of 

growing season (AvT) 

• Trophic mismatches ( 

AvT) 

• habitat not available for 

reproduction (S-) 
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29 
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31 
32 
33 
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38 1475 
39 
40 
41 
42 
43 

 
 
 

Table 1 (continued) 

Cold injury 

Cold hardiness (ExT) 

• cold-susceptible > cold-hardy 

Cold tolerance strategy (ExT) 

• seasonally programmed but readily 

deacclimate > constitutive protection 

Position of biological thresholds (ExT, F/T) 

• lower/higher than current conditions > 

near current conditions 

Habitat (S-) 

• subnivean > supranivean 

 

 

Water Balance 

Susceptibility to waterlogging and ice 

encasement 

• hypoxia intolerant > hypoxia tolerant 

 

 

 

 

 
 

Rapid cold hardening (ExT) 

• none > effective rapid hardening 

response 

Thermal plasticity (ExT) 

• no reacclimation > reacclimation 

Cumulative impact of repeated stress (F/T) 

• cumulative > no cumulative 

impact/impact reaches asymptote 

 

 

 

 

 

 
Water balance strategy 

• no winter water consumption > water 

consumption over winter 

 

 

 

 

 
 

• Direct injury from cold 

(ExT) 

• Cumulative cold injury 

(F/T) 

• Energetic costs of 

repairing cold injury 

(F/T, S-) 

 

 

 

 

 

 

 

• Hypoxia from 

waterlogging/ice 

encasement 

• Unavailability of liquid 

water when frozen 
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Table 1 (continued) 
4 
5 Traits determining stress exposure Traits determining sensitivity to stress Proximal cause of 
6 
7 vulnerability 
8    

9 
10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 1476 
23 1477 
24 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

38 
39 
40 
41 
42 
43 

Predation 

Trophic position (S-) 

• prey > predator 

Habitat (S-) 

• subnivian > supranivean 

 
Predator avoidance (S-) 

• low camouflage plasticity > low 

• low defenses > high 

• high palatability > low 

• low alertness > high 

 
Increased mortality 
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Table 2 – The range of effects of changes in the quantity and timing of snow cover on overwintering organisms. 

5 1479    
6 Quantity of snow 

7 Reduced snow cover 

9 increased soil frost 

10 increased food access for predators/browsers 
11 

12 (decreased food access with increased rain-on-snow) 

13 increased vulnerability of prey 

14 Increased snow cover 
15 

16 increased foraging and locomotion costs (winter-active organisms) 

17 increased energetic maintenance costs (winter-inactive organisms) 
18 

 

19 Timing of snow cover 

20 early snowmelt 

22 earlier warm-season resource gathering 

23 potential phenological mismatch for dormant organisms 
24 

25 delayed snowmelt 

26 delayed warm-season resource gathering 

27 increased protection from frost 
28 

29 mid-winter snowmelt 

30 cold deacclimation followed by frost exposure 
31 increased access to liquid water 
32    
33 1480 
34 1481 
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