1,452 research outputs found

    Quantifying Airway Dilatation in the Lungs from Computed Tomography

    Get PDF
    Non CF bronchiectasis and idiopathic pulmonary fibrosis (IPF) are pulmonary diseases characterised by the abnormal and permanent dilatation of the airways. Computed tomography (CT) is used in clinical practice to diagnose and monitor patients with the disease. Currently, analysis of the scans is performed by manual inspection and there is no established computerised method to quantify the enlargement of airways. I developed a pipeline to quantify the cross-sectional area for a given airway track. Using an airway segmentation, my proposed algorithm measures the area at contiguous intervals along the airway arclength from the Carina to the most distal point visible on CT. I showed the use of the data generated from the pipeline in two applications. First, I proposed a novel tapering measure as the gradient of a linear regression between a logarithmic area against the arclength. The measurement was applied to airways affected by bronchiectasis. Second, I used Bayesian Changepoint Detection (BCD) with the area measurements to locate the progression of IPF along the airway track. The proposed pipeline was applied to a set of clinically acquired scans. I show a statistical difference (p = 3.4×10−4 ) in the tapering measurement between bronchiectatic (n = 53) and controlled (n = 39) airways. In addition, I report a statistical difference (p = 7.2×10−3 ) in the change in measurement between airways remaining healthy (n = 14) and airways that have become bronchiectatic (n = 5). I show the tapering measurement is reproducible independent to voxel size, CT reconstruction, and radiation dose. Using BCD, I show on simulated data (n = 14) my proposed method can detect the progression of IPF within 2.5mm. Finally, using results from BCD, I present a novel measure of IPF progression as the percentage volume change in the diseased region of the airways

    Semidefinite Relaxation of Quadratic Optimization Problems

    Full text link

    Evaluation of automated airway morphological quantification for assessing fibrosing lung disease

    Get PDF
    Abnormal airway dilatation, termed traction bronchiectasis, is a typical feature of idiopathic pulmonary fibrosis (IPF). Volumetric computed tomography (CT) imaging captures the loss of normal airway tapering in IPF. We postulated that automated quantification of airway abnormalities could provide estimates of IPF disease extent and severity. We propose AirQuant, an automated computational pipeline that systematically parcellates the airway tree into its lobes and generational branches from a deep learning based airway segmentation, deriving airway structural measures from chest CT. Importantly, AirQuant prevents the occurrence of spurious airway branches by thick wave propagation and removes loops in the airway-tree by graph search, overcoming limitations of existing airway skeletonisation algorithms. Tapering between airway segments (intertapering) and airway tortuosity computed by AirQuant were compared between 14 healthy participants and 14 IPF patients. Airway intertapering was significantly reduced in IPF patients, and airway tortuosity was significantly increased when compared to healthy controls. Differences were most marked in the lower lobes, conforming to the typical distribution of IPF-related damage. AirQuant is an open-source pipeline that avoids limitations of existing airway quantification algorithms and has clinical interpretability. Automated airway measurements may have potential as novel imaging biomarkers of IPF severity and disease extent

    Evaluation of automated airway morphological quantification for assessing fibrosing lung disease

    Get PDF
    Abnormal airway dilatation, termed traction bronchiectasis, is a typical feature of idiopathic pulmonary fibrosis (IPF). Volumetric computed tomography (CT) imaging captures the loss of normal airway tapering in IPF. We postulated that automated quantification of airway abnormalities could provide estimates of IPF disease extent and severity. We propose AirQuant, an automated computational pipeline that systematically parcellates the airway tree into its lobes and generational branches from a deep learning based airway segmentation, deriving airway structural measures from chest CT. Importantly, AirQuant prevents the occurrence of spurious airway branches by thick wave propagation and removes loops in the airway-tree by graph search, overcoming limitations of existing airway skeletonisation algorithms. Tapering between airway segments (intertapering) and airway tortuosity computed by AirQuant were compared between 14 healthy participants and 14 IPF patients. Airway intertapering was significantly reduced in IPF patients, and airway tortuosity was significantly increased when compared to healthy controls. Differences were most marked in the lower lobes, conforming to the typical distribution of IPF-related damage. AirQuant is an open-source pipeline that avoids limitations of existing airway quantification algorithms and has clinical interpretability. Automated airway measurements may have potential as novel imaging biomarkers of IPF severity and disease extent

    Régularisation spatiale de représentations distribuées de mots

    Get PDF
    Stimulée par l’usage intensif des téléphones mobiles, l’exploitation conjointe des don-nées textuelles et des données spatiales présentes dans les objets spatio-textuels (p. ex. tweets)est devenue la pierre angulaire à de nombreuses applications comme la recherche de lieux d’attraction. Du point de vue scientifique, ces tâches reposent de façon critique sur la représentation d’objets spatiaux et la définition de fonctions d’appariement entre ces objets. Dans cet article,nous nous intéressons au problème de représentation de ces objets. Plus spécifiquement, confortés par le succès des représentations distribuées basées sur les approches neuronales, nous proposons de régulariser les représentations distribuées de mots (c.-à-d. plongements lexicaux ou word embeddings), pouvant être combinées pour construire des représentations d’objets,grâce à leurs répartitions spatiales. L’objectif sous-jacent est de révéler d’éventuelles relations sémantiques locales entre mots ainsi que la multiplicité des sens d’un même mot. Les expérimentations basées sur une tâche de recherche d’information qui consiste à retourner le lieu physique faisant l’objet (sujet) d’un géo-texte montrent que l’intégration notre méthode de régularisation spatiale de représentations distribuées de mots dans un modèle d’appariement de base permet d’obtenir des améliorations significatives par rapport aux modèles de référence

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore