46 research outputs found

    Yersinia pseudotuberculosis Exploits CD209 Receptors for Promoting Host Dissemination and Infection

    Get PDF
    Yersinia pseudotuberculosis is a Gram-negative enteropathogen and causes gastrointestinal infections. It disseminates from gut to mesenteric lymph nodes (MLNs), spleen, and liver of infected humans and animals. Although the molecular mechanisms for dissemination and infection are unclear, many Gram-negative enteropathogens presumably invade the small intestine via Peyer's patches to initiate dissemination. In this study, we demonstrate that Y. pseudotuberculosis utilizes its lipopolysaccharide (LPS) core to interact with CD209 receptors, leading to invasion of human dendritic cells (DCs) and murine macrophages. These Y. pseudotuberculosis CD209 interactions result in bacterial dissemination to MLNs, spleens, and livers of both wild-type and Peyer's patch-deficient mice. The blocking of the Y. pseudotuberculosis CD209 interactions by expression of 0-antigen and with oligosaccharides reduces infectivity. Based on the well-documented studies in which HIV-CD209 interaction leads to viral dissemination, we therefore propose an infection route for Y. pseudotuberculosis where this pathogen, after penetrating the intestinal mucosal membrane, hijacks the Y. pseudotuberculosis CD209 interaction antigen-presenting cells to reach their target destinations, MLNs, spleens, and livers.Peer reviewe

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed

    International progress and evaluation on interactive coupling effects between urbanization and the eco-environment

    Full text link

    Effects of current upon electrochemical catalytic reforming of anisole

    No full text
    The reforming of anisole (as model compound of bio-oil) was performed over the NiCuZn-Al₂O₃catalyst, using a recently-developed electrochemical catalytic reforming (ECR). The influence of the current on the anisole reforming in the ECR process has been investigated. It was observed that anisole reforming was significantly enhanced by the current approached over the catalyst in the electrochemical catalytic process, which was due to the non-uniform temperature distribution in the catalytic bed and the role of the thermal electrons originating from the electrified wire. The maximum hydrogen yield of 88.7% with a carbon conversion of 98.3% was obtained through the ECR reforming of anisole at 700 °C and 4 A. X-ray diffraction was employed to characterize catalyst features and their alterations in the anisole reforming. The apparent activation energy for the anisole reforming is calculated as 99.54 kJ/mol, which is higher than ethanol, acetic acid, and light fraction of bio-oil. It should owe to different physical and chemical properties and reforming mechanism for different hydrocarbons.8 page(s

    Synthesis and electrochemical performance of Mn<sub>2</sub>O<sub>3</sub>/Fe<sub>2</sub>O<sub>3</sub>/few layers graphene/ sulfur cathode for lithium-sulfur batteries

    No full text
    Mn2O3/Fe2O3/few layer graphene/sulfur composites were prepared by melted salt method, interlayer catalytic exfoliation, annealing and melt diffusion method in sequence for lithium-sulfur batteries cathode. The three-dimensional conductive network formed by highly conductive few layers graphene provides electron transfer channel, thus promoting the high capacity performance of lithium-sulfur batteries. The metal oxides distributed uniformly on the surface of graphene exhibit strong interaction towards polysulfides, which can restrain the dissolution of polysulfides and shuttle effect and promote the cycling performance of lithium-sulfur batteries. As a result, the Mn2O3/Fe2O3/FLG30/S cathode shows high capacity and cycling performance. The cathode delivers an initial discharging capacity of 886.3 mAh&#183;g-1 with a high capacity retention of 88.1% after 100 cycles at rate of 0.1 C

    Continuous Goos-Hänchen Shift of Vortex Beam via Symmetric Metal-Cladding Waveguide

    No full text
    Goos-Hänchen shift provides a way to manipulate the transverse shift of an optical beam with sub-wavelength accuracy. Among various enhancement schemes, millimeter-scale shift at near-infrared range has been realized by a simple symmetrical metal-cladding waveguide structure owing to its unique ultrahigh-order modes. However, the interpretation of the shift depends crucially on its definition. This paper shows that the shift of a Gaussian beam is discrete if we follow the light peak based on the stationary phase approach, where the M-lines are fixed to specific directions and the beam profile is separated near resonance. On the contrary, continuous shift can be obtained if the waveguide is illuminated by a vortex beam, and the physical cause can be attributed to the position-dependent phase-match condition of the ultrahigh-order modes due to the spatial phase distribution
    corecore