49 research outputs found

    The Dunhuang chinese sky: a comprehensive study of the oldest known star atlas

    Full text link
    This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object - a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4 degrees for the brightest stars) and examine the type of projections used. We conclude that precise mathematical methods were used to produce the atlas. We also discuss the dating of the manuscript and its possible author and confirm the dates 649-684 (early Tang dynasty) as most probable based on available evidence. This is at variance with a prior estimate around +940. Finally we present a brief comparison with later sky maps, both in China and in Europe.Comment: 19 pages, 5 Tables, 8 Figure

    Spectroscopic monitoring of the Herbig Ae star HD 104237. II. Non-radial pulsations, mode analysis and fundamental stellar parameters

    Full text link
    Herbig Ae/Be stars are intermediate-mass pre-main sequence (PMS) stars showing signs of intense activity and strong stellar winds, whose origin is not yet understood in the frame of current theoretical models of stellar evolution for young stars. The evolutionary tracks of the earlier Herbig Ae stars cross a recently discovered PMS instability strip. Many of these stars exhibit pulsations of delta Scuti type. HD 104237 is a well-known pulsating Herbig Ae star. In this article, we reinvestigated an extensive high-resolution quasi-continuous spectroscopic data set in order to search for very faint indications of non-radial pulsations in the line profile. To do this, we worked on dynamical spectra of equivalent photospheric (LSD) profiles of HD 104237. A 2D Fourier analysis (F2D) was performed of the entire profile and the temporal variation of the central depth of the line was studied with the time-series analysis tools Period04 and SigSpec. We present a mode identification corresponding to the detected dominant frequency. We perform a new accurate determination of the fundamental stellar parameters in view of a forthcoming asteroseismic modeling. Following the previous studies on this star, our analysis of the dynamical spectrum of recentered LSD profiles corresponding to the 22nd -25th of April 1999 nights spectra has confirmed the presence of multiple oscillation modes of low-degree l in HD 104237 and led to the first direct detection of a non-radial pulsation mode in this star: the dominant mode F1 was identified by the Fourier 2D method having a degree l value comprised between 1 and 2, the symmetry of the pattern variation indicating an azimuthal order of +1 or -1. The detailed study of the fundamental stellar parameters has provided a Teff, log g and iron abundance of 8550 +/- 150K, 3.9 +/- 0.3 and -4.38 +/- 0.19 (i.e. [Fe/H]=+0.16 +/- 0.19), respectively

    Fine structure of the chromospheric activity in Solar-type stars - The Halpha Line

    Full text link
    A calibration of H-alpha as both a chromospheric diagnostic and an age indicator is presented, complementing the works previously done on this subject (Herbig 1985, Pasquini & Pallavicini 1991. The chromospheric diagnostic was built with a statistically significant sample, covering nine years of observations, and including 175 solar neighborhood stars. Regarding the age indicator, the presence of stars for which very accurate ages are determined, such as those belonging to clusters and kinematic groups, lends confidence to our analysis. We also investigate the possibility that stars of the same age might have gone through different tracks of chromospheric decay, identifying - within the same age range - effects of metallicity and mass. These parameters, however, as well as age, seem to be significant only for dwarf stars, losing their meaning when we analyze stars in the subgiant branch. This result suggests that, in these evolved stars, the emission mechanism cannot be magnetohydrodynamical in nature, in agreement with recent models (Fawzy et al. 2002c, and references therein). The Sun is found to be a typical star in its H-alpha chromospheric flux, for its age, mass and metallicity. As a byproduct of this work, we developed an automatic method to determine temperatures from the wings of H-alpha, which means the suppression of the error inherent to the visual procedure used in the literature.Comment: 10 pages, 10 figures, accepted for publication in Astronomy & Astrophysics. Nature of replacement: match astro-ph and ADS title (greek letter

    Optical spectroscopic variability of Herbig Ae/Be stars

    Full text link
    We analysed 337 multi-epoch optical spectra of 38 Herbig Ae/Be (HAeBe) stars to gain insights into the variability behaviour of the circumstellar (CS) atomic gas. Equivalent widths (EWs) and line fluxes of the Halpha, [OI]6300, HeI5876 and NaID lines were obtained for each spectrum; the Halpha line width at 10% of peak intensity (W10) and profile shapes were also measured and classified. The mean line strengths and relative variabilities were quantified for each star. Simultaneous optical photometry was used to estimate the line fluxes. We present a homogeneous spectroscopic database of HAeBe stars. The lines are variable in practically all stars and timescales, although 30 % of the objects show a constant EW in [OI]6300, which is also the only line that shows no variability on timescales of hours. The HeI5876 and NaID EW relative variabilities are typically the largest, followed by those in [OI]6300 and Halpha. The EW changes can be larger than one order of magnitude for the HeI5876 line, and up to a factor 4 for Halpha. The [OI]6300 and Halpha EW relative variabilities are correlated for most stars in the sample. The Halpha mean EW and W10 are uncorrelated, as are their relative variabilities. The Halpha profile changes in 70 % of the objects. The massive stars in the sample usually show more stable Halpha profiles with blueshifted self-absorptions and less variable 10% widths. Our data suggest multiple causes for the different line variations, but the [OI]6300 and Halpha variability must share a similar origin in many objects. The physical mechanism responsible for the Halpha line broadening does not depend on the amount of emission; unlike in lower-mass stars, physical properties based on the Halpha luminosity and W10 would significantly differ. Our results provide additional support to previous works that reported different physical mechanisms in Herbig Ae and Herbig Be stars.Comment: 10 pages, 5 figures, 2 appendixe

    Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z=1.4

    Full text link
    Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption line systems. We use a sample of 1406 galaxy spectra at z~1.4 from the DEEP2 redshift survey to show that blueshifted Mg II 2796, 2803 A absorption is ubiquitous in starforming galaxies at this epoch. This is the first detection of frequent outflowing galactic winds at z~1. The presence and depth of absorption are independent of AGN spectral signatures or galaxy morphology; major mergers are not a prerequisite for driving a galactic wind from massive galaxies. Outflows are found in coadded spectra of galaxies spanning a range of 30x in stellar mass and 10x in star formation rate (SFR), calibrated from K-band and from MIPS IR fluxes. The outflows have column densities of order N_H ~ 10^20 cm^-2 and characteristic velocities of ~ 300-500 km/sec, with absorption seen out to 1000 km/sec in the most massive, highest SFR galaxies. The velocities suggest that the outflowing gas can escape into the IGM and that massive galaxies can produce cosmologically and chemically significant outflows. Both the Mg II equivalent width and the outflow velocity are larger for galaxies of higher stellar mass and SFR, with V_wind ~ SFR^0.3, similar to the scaling in low redshift IR-luminous galaxies. The high frequency of outflows in the star-forming galaxy population at z~1 indicates that galactic winds occur in the progenitors of massive spirals as well as those of ellipticals. The increase of outflow velocity with mass and SFR constrains theoretical models of galaxy evolution that include feedback from galactic winds, and may favor momentum-driven models for the wind physics.Comment: Accepted by ApJ. 25 pages, 17 figures. Revised to add discussions of intervening absorbers and AGN-driven outflows; conclusions unchange

    The magnetic field of the pre-main sequence Herbig Ae star HD 190073

    Get PDF
    The general context of this paper is the study of magnetic fields in the pre-main sequence intermediate mass Herbig Ae/Be stars. Magnetic fields are likely to play an important role in pre-main sequence evolution at these masses, in particular in controlling the gains and losses of stellar angular momentum. The particular aim of this paper is to announce the detection of a structured magnetic field in the Herbig Ae star HD 190073, and to discuss various scenarii for the geometry of the star, its environment and its magnetic field. We have used the ESPaDOnS spectropolarimeter at CFHT in 2005 and 2006 to obtain high-resolution and signal-to-noise circular polarization spectra which demonstrate unambiguously the presence of a magnetic field in the photosphere of this star. Nine circular polarization spectra were obtained, each one showing a clear Zeeman signature. This signature is suggestive of a magnetic field structured on large scales. The signature, which corresponds to a longitudinal magnetic field of 74+- 10 G, does not vary detectably on a one-year timeframe, indicating either an azimuthally symmetric field, a zero inclination angle between the rotation axis and the line of sight, or a very long rotation period. The optical spectrum of HD 190073 exhibits a large number of emission lines. We discuss the formation of these emission lines in the framework of a model involving a turbulent heated region at the base of the stellar wind, possibly powered by magnetic accretion. This magnetic detection brings an important element for our understanding of stellar magnetism at intermediate masses.Comment: 10 pages, 6 figures. accepted by Astronomy & Astrophysic

    CNO in evolved intermediate mass stars

    Full text link
    In order to investigate the possible influence of rotation on the efficiency of the first dredge-up we determined atmospheric parameters, masses, and abundances of carbon, nitrogen, and oxygen in a sample of evolved intermediate mass stars. We used high resolution spectra and conducted a model atmosphere analysis. The abundances were calculated through spectral synthesis and compared to the predictions of rotating and non-rotating evolutionary models. Almost all those objects in our sample where carbon and nitrogen abundances could be determined show signs of internal mixing. The stars, however, seem to be mixed to different extents. Among the mixed stars we identify five in our sample with abundances in agreement with the non-rotating models, four stars that seem to be mixed beyond that, and one star that seems to be slightly less mixed than predicted for the first dredge-up. There are also five stars that seem to be slightly more mixed than expected, but their abundances are in marginal agreement with both rotating and non-rotating models. Such differences in the extent of the mixing are not predicted by the standard models and imply the action of other mixing mechanisms than solely the convective dredge-up. We also identified for the first time an important correlation between the [N/C] ratio and the stellar mass.Comment: Accepted for publication in A&A. Final version with language correction

    High Resolution X-ray Spectroscopy of T Tauri Stars in the Taurus-Auriga Complex

    Get PDF
    Differences have been reported between the X-ray emission of accreting and non-accreting stars. Some observations have suggested that accretion shocks could be responsible for part of the X-ray emission in Classical T Tauri stars (CTTS). We present high-resolution X-ray spectroscopy of nine pre-main sequence stars in order to test the proposed spectroscopic differences between accreting and non-accreting pre-main sequence stars. We use X-ray spectroscopy from the XMM-Newton Reflection Grating Spectrometers and the EPIC instruments. We interpret the spectra using optically thin thermal models with variable abundances, together with an absorption column density. For BP Tau and AB Aur we derive electron densities from the O VII triplets. Using the O VII/O VIII count ratios as a diagnostic for cool plasma, we find that CTTS display a soft excess (with equivalent electron temperatures of ~ 2.5-3 MK) when compared with WTTS or zero-age main-sequence stars. Although the O VII triplet in BP Tau is consistent with a high electron density (3.4 x 10^11 cm^-3), we find a low density for the accreting Herbig star AB Aur (n_e < 10^10 cm^-3). The element abundances of accreting and non-accreting stars are similar. The Ne abundance is found to be high (4-6 times the Fe abundance) in all K and M-type stars. In contrast, for the three G-type stars (SU Aur, HD 283572, and HP Tau/G2), we find an enhanced Fe abundance (0.4-0.8 times solar photospheric values) compared to later-type stars. Adding the results from our sample to former high-resolution studies of T Tauri stars, we find a soft excess in all accreting stars, but in none of the non-accretors. On the other hand, high electron density and high Ne/Fe abundance ratios do not seem to be present in all accreting pre-main sequence stars

    The Spectral Energy Distribution and Mass-loss Rate of the A-Type Supergiant Deneb

    Get PDF
    A stellar wind module has been developed for the PHOENIX stellar atmosphere code for the purpose of computing non-LTE, line-blanketed, expanding atmospheric structures and detailed synthetic spectra of hot luminous stars with winds. We apply the code to observations of Deneb, for which we report the first positive detections of mm and cm emission (obtained using the SCUBA and the VLA), as well a strong upper limit on the 850 micron flux (using the HHT). The slope of the radio spectrum shows that the stellar wind is partially ionized. We report a uniform-disk angular diameter measurement, 2.40 +/- 0.06 mas, from the Navy Prototype Optical Interferometer (NPOI). The measured bolometric flux and corrected NPOI angular diameter yield an effective temperature of 8600 +/- 500 K. Least-squares comparisons of synthetic spectral energy distributions from 1220 A to 3.6 cm with the observations provide estimates for the effective temperature and the mass-loss rate of 8400 +/- 100 K and 8 +/- 3 E-7 M_sun/yr, respectively. This range of mass-loss rates is consistent with that derived from high dispersion UV spectra when non-LTE metal-line blanketing is considered. We are unable achieve a reasonable fit to a typical Halpha P-Cygni profile with any model parameters over a reasonable range. This is troubling because the \ha profile is the observational basis for Wind Momentum-Luminosity Relationship.Comment: Accepted by the Astrophysical Journal, 43 pages, 23 figure

    The first high-resolution X-ray spectrum of a Herbig Star: The case of AB Aurigae

    Get PDF
    We present the first high-resolution X-ray spectrum of a prototypical Herbig star (AB Aurigae), measure and interpret various spectral features, and compare our results with model predictions. We use X-ray spectroscopy data from XMM-Newton. The spectra are interpreted using thermal, optically thin emission models with variable element abundances and a photoelectric absorption component. We interpret line flux ratios in He-like triplet of O VII as a function of electron density and the UV radiation field. We use the nearby co-eval classical T Tauri star SU Aur as a comparison. AB Aurigae reveals a soft X-ray spectrum, most plasma being concentrated at 1-6 MK. The He-like triplet reveals no signatures of increased densities and there are no clear indications for strong abundance anomalies. The light curve displays modulated variability, with a period of ~ 42 hr. It is unlikely that a nearby, undetected lower-mass companion is the source of the X-rays. Accretion shocks close to the star should be irradiated by the photosphere, leading to alteration in the He-like triplet fluxes of O VII, which we do not measure. Also, no indications for high densities are found, although the mass accretion rate is presently unknown. Emission from wind shocks is unlikely, given the weak radiation pressure. A possible explanation would be a solar-like magnetic corona. Magnetically confined winds provide a very promising alternative. The X-ray period is indeed close to periods previously measured in optical lines from the wind.Comment: 18 pages, 7 Figure
    corecore