250 research outputs found
'Thank you for loving me': A qualitative study on perceptions of gratitude and their effects in palliative care patients and relatives.
Empirical studies suggest that gratitude positively influence the quality of life of palliative patients and relatives. However, the literature is marked by a lack of conceptual clarity about what gratitude is and whether it can bring about individual and social benefits.
This paper explores how palliative care patients and relatives understand gratitude, how discursive representations of gratitude may affect their positions, perceptions and relations, and how to conceptualise gratitude in the palliative context.
We examine 33 gratitude letters written by patients and relatives and 25 semi-structured interviews conducted as part of a pilot gratitude intervention study. We use a qualitative approach, thematic analysis, within a conceptual framework of discourse analysis.
Data were collected from 23 patients and 13 relatives recruited through three hospital palliative care services in French-speaking Switzerland.
Participants articulate gratitude in five ways: (1) appreciating others; (2) love; (3) need to reciprocate; (4) appreciating the little things; (5) solace amid serious illness. While some of these representations are sources of positive emotions and outlook, wellbeing and hope, others may confirm self-perceptions of powerlessness and burden. These results support a tridimensional conceptualisation of gratitude in palliative care as source of individual benefits, valuing closest relationships and moral obligation.
Our study suggests that gratitude is a key to a good (end of) life, whilst highlighting potential negative effects. It could help healthcare professionals to better understand what gratitude means to patients and relatives, which may facilitate awareness and fostering of gratitude in palliative care
Radioscience simulations in General Relativity and in alternative theories of gravity
In this communication, we focus on the possibility to test GR with
radioscience experiments. We present a new software that in a first step
simulates the Range/Doppler signals directly from the space time metric (thus
in GR and in alternative theories of gravity). In a second step, a
least-squares fit of the involved parameters is performed in GR. This software
allows one to get the order of magnitude and the signature of the modifications
induced by an alternative theory of gravity on radioscience signals. As
examples, we present some simulations for the Cassini mission in
Post-Einsteinian gravity and with the MOND External Field Effect.Comment: 4 pages; Proceedings of "Les Rencontres de Moriond 2011 - Gravitation
session
Accurate light-time correction due to a gravitating mass
This work arose as an aftermath of Cassini's 2002 experiment \cite{bblipt03},
in which the PPN parameter was measured with an accuracy
and found consistent with the prediction
of general relativity. The Orbit Determination Program (ODP) of
NASA's Jet Propulsion Laboratory, which was used in the data analysis, is based
on an expression for the gravitational delay which differs from the standard
formula; this difference is of second order in powers of -- the sun's
gravitational radius -- but in Cassini's case it was much larger than the
expected order of magnitude , where is the ray's closest approach
distance. Since the ODP does not account for any other second-order terms, it
is necessary, also in view of future more accurate experiments, to
systematically evaluate higher order corrections and to determine which terms
are significant. Light propagation in a static spacetime is equivalent to a
problem in ordinary geometrical optics; Fermat's action functional at its
minimum is just the light-time between the two end points A and B. A new and
powerful formulation is thus obtained. Asymptotic power series are necessary to
provide a safe and automatic way of selecting which terms to keep at each
order. Higher order approximations to the delay and the deflection are
obtained. We also show that in a close superior conjunction, when is much
smaller than the distances of A and B from the Sun, of order , say, the
second-order correction has an \emph{enhanced} part of order , which
corresponds just to the second-order terms introduced in the ODP. Gravitational
deflection of the image of a far away source, observed from a finite distance
from the mass, is obtained to .Comment: 4 figure
Strong tidal dissipation in Saturn and constraints on Enceladus' thermal state from astrometry
Tidal interactions between Saturn and its satellites play a crucial role in
both the orbital migration of the satellites and the heating of their
interiors. Therefore constraining the tidal dissipation of Saturn (here the
ratio k2/Q) opens the door to the past evolution of the whole system. If
Saturn's tidal ratio can be determined at different frequencies, it may also be
possible to constrain the giant planet's interior structure, which is still
uncertain. Here, we try to determine Saturn's tidal ratio through its current
effect on the orbits of the main moons, using astrometric data spanning more
than a century. We find an intense tidal dissipation (k2/Q= (2.3 \pm 0.7)
\times 10-4), which is about ten times higher than the usual value estimated
from theoretical arguments. As a consequence, eccentricity equilibrium for
Enceladus can now account for the huge heat emitted from Enceladus' south pole.
Moreover, the measured k2/Q is found to be poorly sensitive to the tidal
frequency, on the short frequency interval considered. This suggests that
Saturn's dissipation may not be controlled by turbulent friction in the fluid
envelope as commonly believed. If correct, the large tidal expansion of the
moon orbits due to this strong Saturnian dissipation would be inconsistent with
the moon formations 4.5 Byr ago above the synchronous orbit in the Saturnian
subnebulae. But it would be compatible with a new model of satellite formation
in which the Saturnian satellites formed possibly over longer time scale at the
outer edge of the main rings. In an attempt to take into account for possible
significant torques exerted by the rings on Mimas, we fitted a constant rate
da/dt on Mimas semi-major axis, also. We obtained an unexpected large
acceleration related to a negative value of da/dt= -(15.7 \pm 4.4) \times 10-15
au/day
Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers
General relativistic deflection of light by mass, dipole, and quadrupole
moments of gravitational field of a moving massive planet in the Solar system
is derived. All terms of order 1 microarcsecond are taken into account,
parametrized, and classified in accordance with their physical origin. We
calculate the instantaneous patterns of the light-ray deflections caused by the
monopole, the dipole and the quadrupole moments, and derive equations
describing apparent motion of the deflected position of the star in the sky
plane as the impact parameter of the light ray with respect to the planet
changes due to its orbital motion. The present paper gives the physical
interpretation of the observed light-ray deflections and discusses the
observational capabilities of the near-future optical (SIM) and radio (SKA)
interferometers for detecting the Doppler modulation of the radial deflection,
and the dipolar and quadrupolar light-ray bendings by the Jupiter and the
Saturn.Comment: 33 pages, 10 figures, accepted to Phys. Rev.
A universal tool for determining the time delay and the frequency shift of light: Synge's world function
In almost all of the studies devoted to the time delay and the frequency
shift of light, the calculations are based on the integration of the null
geodesic equations. However, the above-mentioned effects can be calculated
without integrating the geodesic equations if one is able to determine the
bifunction giving half the squared geodesic distance between
two points and (this bifunction may be called Synge's world
function). In this lecture, is determined up to the order
within the framework of the PPN formalism. The case of a stationary
gravitational field generated by an isolated, slowly rotating axisymmetric body
is studied in detail. The calculation of the time delay and the frequency shift
is carried out up to the order . Explicit formulae are obtained for the
contributions of the mass, of the quadrupole moment and of the internal angular
momentum when the only post-Newtonian parameters different from zero are
and . It is shown that the frequency shift induced by the mass
quadrupole moment of the Earth at the order will amount to
in spatial experiments like the ESA's Atomic Clock Ensemble in Space mission.
Other contributions are briefly discussed.Comment: 18 pages, To appear in: "Lasers, Clocks and Drag-Free control:
Exploration of Relativistic Gravity in Space", Springer Series on
Astrophysics and Space Science Library, vol 349, p 15
Augmented Reality: What Motivates Late Millennials towards Fashion Mobile Apps?
Generation Z is expected to be a dominant demographic and economic group. Cyber-waviness,
constant reliance on smart devices that allows them to be always connected are among some of
their intrinsic characteristics. The combination of this reality with the ever-changing
technological environment is compelling retailers to reshape their business strategies, to meet
this group desires and expectations and to foster their engagement. Augmented reality (AR) is
emerging as a technological solution that pleases both consumers and retailers. This paper aims
to answer two main questions: (1) How does generation Z evaluate an AR experience? (2)
Which attributes/benefits do they value or not during an AR experience? Drawing on a
qualitative methodology – content analysis of 34 interviewees – we discuss six main
dimensions the potential customer value of the relationship between them and AR experiences
under retailer context.info:eu-repo/semantics/publishedVersio
<i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties
Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7.
Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release.
Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue.
Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7.
Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data
A dualistic model of primary anal canal adenocarcinoma with distinct cellular origins, etiologies, inflammatory microenvironments and mutational signatures: implications for personalised medicine.
Primary adenocarcinoma of the anal canal is a rare and aggressive gastrointestinal disease with unclear pathogenesis. Because of its rarity, no clear clinical practice guideline has been defined and a targeted therapeutic armamentarium has yet to be developed. The present article aimed at addressing this information gap by in-depth characterising the anal glandular neoplasms at the histologic, immunologic, genomic and epidemiologic levels.
In this multi-institutional study, we first examined the histological features displayed by each collected tumour (n = 74) and analysed their etiological relationship with human papillomavirus (HPV) infection. The intratumoural immune cell subsets (CD4, CD8, Foxp3), the expression of immune checkpoints (PD-1, PD-L1), the defect in mismatch repair proteins and the mutation analysis of multiple clinically relevant genes in the gastrointestinal cancer setting were also determined. Finally, the prognostic significance of each clinicopathological variable was assessed.
Phenotypic analysis revealed two region-specific subtypes of anal canal adenocarcinoma. The significant differences in the HPV status, density of tumour-infiltrating lymphocytes, expression of immune checkpoints and mutational profile of several targetable genes further supported the separation of these latter neoplasms into two distinct entities. Importantly, anal gland/transitional-type cancers, which poorly respond to standard treatments, displayed less mutations in downstream effectors of the EGFR signalling pathway (i.e., KRAS and NRAS) and demonstrated a significantly higher expression of the immune inhibitory ligand-receptor pair PD-1/PD-L1 compared to their counterparts arising from the colorectal mucosa.
Taken together, the findings reported in the present article reveal, for the first time, that glandular neoplasms of the anal canal arise by HPV-dependent or independent pathways. These etiological differences leads to both individual immune profiles and mutational landscapes that can be targeted for therapeutic benefits
Augmenting the Eye of the Beholder: Exploring the Strategic Potential of Augmented Reality to Enhance Online Service Experiences
Driven by the proliferation of augmented reality (AR) technologies, many firms are pursuing a strategy of service augmentation to enhance customers’ online service experiences. Drawing on situated cognition theory, the authors show that AR - based service augmentation enhances customer value perceptions by simultaneously providing simulated physical control and environmental embedding. The resulting authentic situated experience, manifested in a feeling of spatial presence, funct ions as a mediator and also predicts customer decision comfort. Furthermore, the effect of spatial presence on utilitarian value perceptions is greater for customers who are disposed toward verbal rather than visual information processing, and the positive effect on decision comfort is attenuated by customers’ privacy concerns
- …