202 research outputs found

    Reading between the LINEs to see into the past

    Get PDF
    Transposable elements (TEs) are an important source of genome diversity and play a crucial role in genome evolution. A recent study by Zhao et al. describes novel patterns of TE diversification in the genome of the extinct mammoth Mammuthus primigenius. Analysis of Mammuthus has provided a unique genome landscape, a pivotal species for understanding TEs and genome evolution and hints at the diversity we verge on discovering by expanding our taxonomic sampling among genomes. Strategies based on this work might also revolutionize investigations of the interface between TE dynamics and genome diversity. © 2009 Elsevier Ltd. All rights reserved

    Genome sequence of Phormia regina Meigen (Diptera: Calliphoridae): implications for medical, veterinary and forensic research

    Get PDF
    BACKGROUND: Blow flies (Diptera: Calliphoridae) are important medical, veterinary and forensic insects encompassing 8 % of the species diversity observed in the calyptrate insects. Few genomic resources exist to understand the diversity and evolution of this group. RESULTS: We present the hybrid (short and long reads) draft assemblies of the male and female genomes of the common North American blow fly, Phormia regina (Diptera: Calliphoridae). The 550 and 534 Mb draft assemblies contained 8312 and 9490 predicted genes in the female and male genomes, respectively; including > 93 % conserved eukaryotic genes. Putative X and Y chromosomes (21 and 14 Mb, respectively) were assembled and annotated. The P. regina genomes appear to contain few mobile genetic elements, an almost complete absence of SINEs, and most of the repetitive landscape consists of simple repetitive sequences. Candidate gene approaches were undertaken to annotate insecticide resistance, sex-determining, chemoreceptors, and antimicrobial peptides. CONCLUSIONS: This work yielded a robust, reliable reference calliphorid genome from a species located in the middle of a calliphorid phylogeny. By adding an additional blow fly genome, the ability to tease apart what might be true of general calliphorids vs. what is specific of two distinct lineages now exists. This resource will provide a strong foundation for future studies into the evolution, population structure, behavior, and physiology of all blow flies

    Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera

    Get PDF
    Background Transposable elements (TEs) have the potential to impact genome structure, function and evolution in profound ways. In order to understand the contribution of transposable elements (TEs) to Heliconius melpomene, we queried the H. melpomene draft sequence to identify repetitive sequences. Results We determined that TEs comprise ~25% of the genome. The predominant class of TEs (~12% of the genome) was the non-long terminal repeat (non-LTR) retrotransposons, including a novel SINE family. However, this was only slightly higher than content derived from DNA transposons, which are diverse, with several families having mobilized in the recent past. Compared to the only other well-studied lepidopteran genome, Bombyx mori, H. melpomene exhibits a higher DNA transposon content and a distinct repertoire of retrotransposons. We also found that H. melpomene exhibits a high rate of TE turnover with few older elements accumulating in the genome. Conclusions Our analysis represents the first complete, de novo characterization of TE content in a butterfly genome and suggests that, while TEs are able to invade and multiply, TEs have an overall deleterious effect and/or that maintaining a small genome is advantageous. Our results also hint that analysis of additional lepidopteran genomes will reveal substantial TE diversity within the group

    A genomic resource for the sedentary semi-endoparasitic reniform nematode, Rotylenchulus reniformis Linford & Oliveira.

    Get PDF
    The reniform nematode (Rotylenchulus reniformis) is a sedentary semi-endoparasitic species that is pathogenic on many row crops, fruits, and vegetables. Here, the authors present a draft genome assembly of R. reniformis using small- and large-insert libraries sequenced on the Illumina GAIIx and MiSeq platforms. The reniform nematode (Rotylenchulus reniformis) is a sedentary semi-endoparasitic species that is pathogenic on many row crops, fruits, and vegetables. Here, the authors present a draft genome assembly of R. reniformis using small- and large-insert libraries sequenced on the Illumina GAIIx and MiSeq platforms

    Особенности терапии атипичного герпеса и ассоциированного с ним рецидивирующего вульвовагинального кандидоза

    Get PDF
    КАНДИДОЗ ВУЛЬВОВАГИНАЛЬНЫЙ /ЛЕК ТЕРВЛАГАЛИЩА БОЛЕЗНИ /ЛЕК ТЕРВУЛЬВЫ БОЛЕЗНИ /ЛЕК ТЕРЖЕНСКИЕ БОЛЕЗНИ /ЛЕК ТЕРПРОТИВОГРИБКОВЫЕ СРЕДСТВАПРОТИВОВИРУСНЫЕ СРЕДСТВАГЕРПЕСВИРУСНЫЕ ИНФЕКЦИИРЕЦИДИВГЕРПЕСВИРУС 1 ЧЕЛОВЕКАГЕРПЕСВИРУС 2 ЧЕЛОВЕК

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389

    Draft genome sequence of the Tibetan antelope

    Get PDF
    The Tibetan antelope (Pantholops hodgsonii) is endemic to the extremely inhospitable high-altitude environment of the Qinghai-Tibetan Plateau, a region that has a low partial pressure of oxygen and high ultraviolet radiation. Here we generate a draft genome of this artiodactyl and use it to detect the potential genetic bases of highland adaptation. Compared with other plain-dwelling mammals, the genome of the Tibetan antelope shows signals of adaptive evolution and gene-family expansion in genes associated with energy metabolism and oxygen transmission. Both the highland American pika, and the Tibetan antelope have signals of positive selection for genes involved in DNA repair and the production of ATPase. Genes associated with hypoxia seem to have experienced convergent evolution. Thus, our study suggests that common genetic mechanisms might have been utilized to enable high-altitude adaptation
    corecore