792 research outputs found

    Unconventional carrier-mediated ferromagnetism above room temperature in ion-implanted (Ga, Mn)P:C

    Full text link
    Ion implantation of Mn ions into hole-doped GaP has been used to induce ferromagnetic behavior above room temperature for optimized Mn concentrations near 3 at.%. The magnetism is suppressed when the Mn dose is increased or decreased away from the 3 at.% value, or when n-type GaP substrates are used. At low temperatures the saturated moment is on the order of one Bohr magneton, and the spin wave stiffness inferred from the Bloch-law T^3/2 dependence of the magnetization provides an estimate Tc = 385K of the Curie temperature that exceeds the experimental value, Tc = 270K. The presence of ferromagnetic clusters and hysteresis to temperatures of at least 330K is attributed to disorder and proximity to a metal-insulating transition.Comment: 4 pages, 4 figures (RevTex4

    Probing Sub-Micron Forces by Interferometry of Bose-Einstein Condensed Atoms

    Full text link
    We propose a technique, using interferometry of Bose-Einstein condensed alkali atoms, for the detection of sub-micron-range forces. It may extend present searches at 1 micron by 6 to 9 orders of magnitude, deep into the theoretically interesting regime of 1000 times gravity. We give several examples of both four-dimensional particles (moduli), as well as higher-dimensional particles -- vectors and scalars in a large bulk-- that could mediate forces accessible by this technique.Comment: 32 pages, 5 figures, RevTeX4, expanded discussion of interactions, references added, to appear in PR

    Novel Molecular Targets for Tumor-Specific Imaging of Epithelial Ovarian Cancer Metastases

    Get PDF
    In epithelial ovarian cancer (EOC), the strongest prognostic factor is the completeness of surgery. Intraoperative molecular imaging that targets cell-surface proteins on tumor cells may guide surgeons to detect metastases otherwise not visible to the naked eye. Previously, we identified 29% more metastatic lesions during cytoreductive surgery using OTL-38, a fluorescent tracer targeting folate receptor-α (FRα). Unfortunately, eleven out of thirteen fluorescent lymph nodes were tumor negative. The current study evaluates the suitability of five biomarkers (EGFR, VEGF-A, L1CAM, integrin αvβ6 and EpCAM) as alternative targets for molecular imaging of EOC metastases and included FRα as a reference. Immunohistochemistry was performed on paraffin-embedded tissue sections of primary ovarian tumors, omental, peritoneal and lymph node metastases from 84 EOC patients. Tumor-negative tissue specimens from these patients were included as controls. EGFR, VEGF-A and L1CAM were highly expressed in tumor-negative tissue, whereas αvβ6 showed heterogeneous expression in metastases. The expression of EpCAM was most comparable to FRα in metastatic lesions and completely absent in the lymph nodes that were false-positively illuminated with OTL-38 in our previous study. Hence, EpCAM seems to be a promising novel target for intraoperative imaging and may contribute to a more reliable detection of true metastatic EOC lesions.Surgical oncolog

    Invigorating hydrological research through journal publications

    Get PDF
    Over the past five years, the editors of a number of journals in the discipline of hydrology have met informally to discuss challenges and concerns in relation to the rapidly changing publishing landscape. Two of the previous meetings, in Götenborg in July 2013 and in Prague in June 2015, were followed by joint editorials (Blöschl et al. 2014; Koutsoyiannis et al. 2016) published in all participating journals. A meeting was convened in Vienna in April 2017 [during the General Assembly of the European Geosciences Union (EGU)] that was attended by 21 editors representing 14 journals. Even though the journals are published in very different settings, the editors found common cause in a vision of the editor’s role beyond just that of gatekeeper ensuring high-quality publications, to also being critical facilitators of scientific advances. In that enabling spirit, we as editors acknowledge the need to anticipate and adapt to the changing publishing landscape. This editorial communicates our views on the implications for authors, readers, reviewers, institutional assessors, and the community of editors, as discussed during the meeting and subsequently

    Research priorities for negative emissions

    Get PDF
    Carbon dioxide removal from the atmosphere (CDR)—also known as ‘negative emissions’—features prominently in most 2 °Cscenarios and has been under increased scrutiny by scientists, citizens, and policymakers. Critics argue that ‘negative emission technologies’ (NETs) are insufficiently mature to rely on them for climate stabilization. Some even argue that 2 °Cis no longer feasible or might have unacceptable social and environmental costs. Nonetheless, the Paris Agreement endorsed an aspirational goal of limiting global warming to even lower levels, arguing that climate impacts— especially for vulnerable nations such as small island states—will be unacceptably severe in a 2 °C world. While there are few pathways to 2 °Cthat do not rely on negative emissions, 1.5 °Cscenarios are barely conceivable without them. Building on previous assessments of NETs, we identify some urgent research needs to provide a more complete picture for reaching ambitious climate targets, and the role that NETs can play in reaching them

    Direct measurments of (p,γ) cross sections at astrophysical energies using radioactive beams and the Daresbury Recoil Separator

    Get PDF
    There are a number of astrophysical environments in which the path of nucleosynthesis proceeds through proton-rich nuclei. Radioactive nuclei have traditionally not been available as beams, and thus proton-capture reactions on these nuclei could only be studied indirectly. At the Holifield Radioactive Ion Beam Facility (HRIBF), some of the first direct measurements of (p,γ) cross sections on radioactive beams have been made. The Daresbury Recoil Separator (DRS) has been used to separate the recoils of interest from the unreacted primary beam and identify them in an isobutane-filled ionization counter. Data from 17F(p,γ)18Ne and 7Be(p,γ)8B measurements are presented

    The need for carbon emissions-driven climate projections in CMIP7

    Get PDF
    Previous phases of the Coupled Model Intercomparison Project (CMIP) have primarily focused on simulations driven by atmospheric concentrations of greenhouse gases (GHGs), both for idealized model experiments, and for climate projections of different emissions scenarios. We argue that although this approach was pragmatic to allow parallel development of Earth System Model simulations and detailed socioeconomic futures, carbon cycle uncertainty as represented by diverse, process-resolving Earth System Models (ESMs) is not manifested in the scenario outcomes, thus omitting a dominant source of uncertainty in meeting the Paris Agreement. Mitigation policy is defined in terms of human activity (including emissions), with strategies varying in their timing of net-zero emissions, the balance of mitigation effort between short-lived and long-lived climate forcers, their reliance on land use strategy and the extent and timing of carbon removals. To explore the response to these drivers, ESMs need to explicitly represent complete cycles of major GHGs, including natural processes and anthropogenic influences. Carbon removal and sequestration strategies, which rely on proposed human management of natural systems, are currently represented upstream of ESMs in an idealized fashion during scenario development. However, proper accounting of the coupled system impacts of and feedback on such interventions requires explicit process representation in ESMs to build self-consistent physical representations of their potential effectiveness and risks under climate change. We propose that CMIP7 efforts prioritize simulations driven by CO2 emissions from fossil fuel use, projected deployment of carbon dioxide removal technologies, as well as land use and management, using the process resolution allowed by state-of-the-art ESMs to resolve carbon-climate feedbacks. Post-CMIP7 ambitions should aim to incorporate modeling of non-CO2 GHGs (in particular sources and sinks of methane) and process-based representation of carbon removal options. Such experiments would allow resources to be allocated to policy-relevant climate projections and better real-time information related to the detectability and verification of emissions reductions and their relationship to expected near-term climate impacts. Such efforts will provide information on the range of possible future climate states including Earth system processes and feedbacks which are increasingly well-represented in ESMs, thus forming a critical and complementary pillar underpinning proposed km-scale climate modeling activities and calls to better utilize novel machine learning approaches

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore