205 research outputs found

    Towards Solving QCD - The Transverse Zero Modes in Light-Cone Quantization

    Get PDF
    We formulate QCD in (d+1) dimensions using Dirac's front form with periodic boundary conditions, that is, within Discretized Light-Cone Quantization. The formalism is worked out in detail for SU(2) pure glue theory in (2+1) dimensions which is approximated by restriction to the lowest {\it transverse} momentum gluons. The dimensionally-reduced theory turns out to be SU(2) gauge theory coupled to adjoint scalar matter in (1+1) dimensions. The scalar field is the remnant of the transverse gluon. This field has modes of both non-zero and zero {\it longitudinal} momentum. We categorize the types of zero modes that occur into three classes, dynamical, topological, and constrained, each well known in separate contexts. The equation for the constrained mode is explicitly worked out. The Gauss law is rather simply resolved to extract physical, namely color singlet states. The topological gauge mode is treated according to two alternative scenarios related to the In the one, a spectrum is found consistent with pure SU(2) gluons in (1+1) dimensions. In the other, the gauge mode excitations are estimated and their role in the spectrum with genuine Fock excitations is explored. A color singlet state is given which satisfies Gauss' law. Its invariant mass is estimated and discussed in the physical limit.Comment: LaTex document, 26 pages, one figure (obtainable by contacting authors). To appear in Physical. Review

    Mitochondrial Release of Caspase-2 and -9 during the Apoptotic Process

    Get PDF
    The barrier function of mitochondrial membranes is perturbed early during the apoptotic process. Here we show that the mitochondria contain a caspase-like enzymatic activity cleaving the caspase substrate Z-VAD.afc, in addition to three biological activities previously suggested to participate in the apoptotic process: (a) cytochrome c; (b) an apoptosis-inducing factor (AIF) which causes isolated nuclei to undergo apoptosis in vitro; and (c) a DNAse activity. All of these factors, which are biochemically distinct, are released upon opening of the permeability transition (PT) pore in a coordinate, Bcl-2–inhibitable fashion. Caspase inhibitors fully neutralize the Z-VAD.afc–cleaving activity, have a limited effect on the AIF activity, and have no effect at all on the DNase activities. Purification of proteins reacting with the biotinylated caspase substrate Z-VAD, immunodetection, and immunodepletion experiments reveal the presence of procaspase-2 and -9 in mitochondria. Upon induction of PT pore opening, these procaspases are released from purified mitochondria and become activated. Similarly, upon induction of apoptosis, both procaspases redistribute from the mitochondrion to the cytosol and are processed to generate enzymatically active caspases. This redistribution is inhibited by Bcl-2. Recombinant caspase-2 and -9 suffice to provoke full-blown apoptosis upon microinjection into cells. Altogether, these data suggest that caspase-2 and -9 zymogens are essentially localized in mitochondria and that the disruption of the outer mitochondrial membrane occurring early during apoptosis may be critical for their subcellular redistribution and activation

    Constraining the electric charges of some astronomical bodies in Reissner-Nordstrom spacetimes and generic r^-2-type power-law potentials from orbital motions

    Full text link
    We put model-independent, dynamical constraints on the net electric charge Q of some astronomical and astrophysical objects by assuming that their exterior spacetimes are described by the Reissner-Nordstroem metric, which induces an additional potential U_RN \propto Q^2 r^-2. Our results extend to other hypothetical power-law interactions inducing extra-potentials U_pert = r^-2 as well (abridged).Comment: LaTex2e, 16 pages, 3 figures, no tables, 128 references. Version matching the one at press in General Relativity and Gravitation (GRG). arXiv admin note: substantial text overlap with arXiv:1112.351

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    From opera buffa to opera seria: anniversaries of Royal College of Surgeons of England research initiatives

    Get PDF

    Distributed Multimedia Learning Environments: Why and How?

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
    corecore