88 research outputs found

    The use of trained volunteers in the response to out-of-hospital cardiac arrest – the GoodSAM Experience

    Get PDF
    In England, fewer than 1 in 10 out-of-hospital cardiac arrest victims survive to hospital discharge. This could be substantially improved by increasing bystander cardiopulmonary resuscitation and Automated External Defibrillator use. GoodSAM is a mobile-phone, app-based system, alerting trained individuals to nearby cardiac arrests. ‘Responders’ can be notified by bystanders using the GoodSAM ‘Alerter’ function. In London, when a 999 call-handler identifies cardiac arrest, in addition to dispatching the usual professional resources, London Ambulance Service automatically activates nearby GoodSAM responders. This article discusses the development of GoodSAM, its integration with London Ambulance Service, and the plans for future expansion

    Complex and alternate consent pathways in clinical trials: methodological and ethical challenges encountered by underserved groups and a call to action

    Get PDF
    Background: Informed consent is considered a fundamental requirement for participation in trials, yet obtaining consent is challenging in a number of populations and settings. This may be due to participants having communication or other disabilities, their capacity to consent fluctuates or they lack capacity, or in emergency situations where their medical condition or the urgent nature of the treatment precludes seeking consent from either the participant or a representative. These challenges, and the subsequent complexity of designing and conducting trials where alternative consent pathways are required, contribute to these populations being underserved in research. Recognising and addressing these challenges is essential to support trials involving these populations and ensure that they have an equitable opportunity to participate in, and benefit from, research. Given the complex nature of these challenges, which are encountered by both adults and children, a cross-disciplinary approach is required. Discussion: A UK-wide collaboration, a sub-group of the Trial Conduct Working Group in the MRC-NIHR Trial Methodology Research Partnership, was formed to collectively address these challenges. Members are drawn from disciplines including bioethics, qualitative research, trials methodology, healthcare professions, and social sciences. This commentary draws on our collective expertise to identify key populations where particular methodological and ethical challenges around consent are encountered, articulate the specific issues arising in each population, summarise ongoing and completed research, and identify targets for future research. Key populations include people with communication or other disabilities, people whose capacity to consent fluctuates, adults who lack the capacity to consent, and adults and children in emergency and urgent care settings. Work is ongoing by the sub-group to create a database of resources, to update NIHR guidance, and to develop proposals to address identified research gaps. Conclusion: Collaboration across disciplines, sectors, organisations, and countries is essential if the ethical and methodological challenges surrounding trials involving complex and alternate consent pathways are to be addressed. Explicating these challenges, sharing resources, and identifying gaps for future research is an essential first step. We hope that doing so will serve as a call to action for others seeking ways to address the current consent-based exclusion of underserved populations from trials

    Complex and alternate consent pathways in clinical trials: methodological and ethical challenges encountered by underserved groups and a call to action

    Get PDF
    Background: Informed consent is considered a fundamental requirement for participation in trials, yet obtaining consent is challenging in a number of populations and settings. This may be due to participants having communication or other disabilities, their capacity to consent fluctuates or they lack capacity, or in emergency situations where their medical condition or the urgent nature of the treatment precludes seeking consent from either the participant or a representative. These challenges, and the subsequent complexity of designing and conducting trials where alternative consent pathways are required, contribute to these populations being underserved in research. Recognising and addressing these challenges is essential to support trials involving these populations and ensure that they have an equitable opportunity to participate in, and benefit from, research. Given the complex nature of these challenges, which are encountered by both adults and children, a cross-disciplinary approach is required. Discussion: A UK-wide collaboration, a sub-group of the Trial Conduct Working Group in the MRC-NIHR Trial Methodology Research Partnership, was formed to collectively address these challenges. Members are drawn from disciplines including bioethics, qualitative research, trials methodology, healthcare professions, and social sciences. This commentary draws on our collective expertise to identify key populations where particular methodological and ethical challenges around consent are encountered, articulate the specific issues arising in each population, summarise ongoing and completed research, and identify targets for future research. Key populations include people with communication or other disabilities, people whose capacity to consent fluctuates, adults who lack the capacity to consent, and adults and children in emergency and urgent care settings. Work is ongoing by the sub-group to create a database of resources, to update NIHR guidance, and to develop proposals to address identified research gaps. Conclusion: Collaboration across disciplines, sectors, organisations, and countries is essential if the ethical and methodological challenges surrounding trials involving complex and alternate consent pathways are to be addressed. Explicating these challenges, sharing resources, and identifying gaps for future research is an essential first step. We hope that doing so will serve as a call to action for others seeking ways to address the current consent-based exclusion of underserved populations from trials

    Fifteen-minute consultation: An evidence-based approach to research without prior consent (deferred consent) in neonatal and paediatric critical care trials

    Get PDF
    What do we mean by research without prior consent (deferred consent)? Emergency research with critically unwell children is vital to make sure that the most ill and injured children benefit from evidence-based healthcare.1 Ethical guidance require that consent be sought from parents (or legal representatives) on behalf of their children2 before research is initiated, yet concerns about problems in seeking parents’ consent when their child is critically ill have been a significant barrier to conducting clinical trials.3 ,4 Taking time out to seek informed consent before starting treatment will often be difficult to justify as delaying any intervention in an emergency could diminish a child's chances of recovery. Parents will usually be highly distressed in a critical care situation, and many will struggle to make an informed decision about research in the limited time available. Many countries have legislated to permit variations to informed consent and allow progress in research to develop critical care treatments.5–7 While the details vary, a common feature is that informed consent is not requested before the patient receives the intervention being researched.8 In the USA, the Food and Drug Administration (FDA) Exception from Informed Consent (EFIC) essentially ‘waives’ informed consent, although practitioners must show that they have attempted to contact legal representatives and tried to provide the opportunity to ‘opt out’ of a trial.5 ,9 The FDA's detailed guidance aims to assist researchers in implementing EFIC,10 ,11 although the accompanying public consultation requirements have led to varied practice and costly delays in setting up trialsCATCH was funded by the National Institute for Health Research Health Technology Assessment (NIHR HTA) programme (project number 08/13/47). CONNECTwas funded by Wellcome Trust (WT095874MF) and supported by the MRC Network of Hubs for Trials Methodology Research (MR/L004933/1- R/N42)

    Plcg2M28L Interacts With High Fat/High Sugar Diet to Accelerate Alzheimer\u27s Disease-Relevant Phenotypes in Mice.

    Get PDF
    Obesity is recognized as a significant risk factor for Alzheimer\u27s disease (AD). Studies have supported the notion that obesity accelerates AD-related pathophysiology in mouse models of AD. The majority of studies, to date, have focused on the use of early-onset AD models. Here, we evaluate the impact of genetic risk factors on late-onset AD (LOAD) in mice fed with a high fat/high sugar diet (HFD). We focused on three mouse models created through the IU/JAX/PITT MODEL-AD Center. These included a combined risk model wit

    Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer.

    Get PDF
    BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. RESULTS: The most significant global associations for all genes in the pathway were seen in endometrioid ( p = 0.082) and clear cell ( p = 0.083), with the most significant gene level association seen with TGFBR2 ( p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 ( p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA ( p = 0.035, endometrioid and mucinous), LGALS1 ( p = 0.03, mucinous), STAT5B ( p = 0.022, clear cell), TGFBR1 ( p = 0.021 endometrioid) and TGFBR2 ( p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). CONCLUSIONS: Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF
    Background Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19.Methods The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 µg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 µg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (antispike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing.Findings Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6–77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3–214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030–27 162), which increased to 37 460 ELU/mL (31 996–43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41–1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996–30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826–64 452), with a geometric mean fold change of 2·19 (1·90–2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37–14·32) and 15·90 (12·92–19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24–16·54] in the BNT162b2 group and 6·22 [3·90–9·92] in the mRNA-1273 group).Interpretation Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose
    corecore