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ABSTRACT

Background: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are 
mediators of immunosuppression in cancer, and, thus, variants in genes encoding 
Treg cell immune molecules could be associated with ovarian cancer.

Methods: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 
23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway 
genes with odds of ovarian cancer and tested pathway and gene-level associations, 
overall and by histotype, for the 25 genes, using the admixture likelihood (AML) 
method. The most significant single SNP associations were tested for correlation with 
expression levels in 44 ovarian cancer patients. 

Results: The most significant global associations for all genes in the pathway 
were seen in endometrioid (p = 0.082) and clear cell (p = 0.083), with the most 
significant gene level association seen with TGFBR2 (p = 0.001) and clear cell EOC. 
Gene associations with histotypes at p < 0.05 included: IL12 (p = 0.005 and p = 
0.008, serous and high-grade serous, respectively), IL8RA (p = 0.035, endometrioid 
and mucinous), LGALS1 (p = 0.03, mucinous), STAT5B (p = 0.022, clear cell), TGFBR1 
(p = 0.021 endometrioid) and TGFBR2 (p = 0.017 and p = 0.025, endometrioid and 
mucinous, respectively). 

Conclusions: Common inherited gene variation in Treg cell pathways shows some 
evidence of germline genetic contribution to odds of EOC that varies by histologic 
subtype and may be associated with mRNA expression of immune-complex receptor 
in EOC patients.
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INTRODUCTION

Ovarian cancer is the leading cause of death due to 
gynecological cancers in the United States [1]. Although 
two-thirds of ovarian cancer patients initially respond 
to surgical debulking and chemotherapy [2], a majority 
eventually relapse [3, 4]. The five-year survival rate of 
ovarian cancer varies significantly across clinical stages, 
with almost 90% of stage I patients surviving, to just a 
little over 20% of advanced-stage patients surviving [5]. 

In recent years, host tumor immunosuppression has 
attracted research in ovarian cancer in hopes of identifying 
underlying biological mechanisms that determine 
the development and progression of ovarian cancer. 
Ovarian tumors have been found to induce migration 
of immunosuppressive cells into tumor tissue [6]. Thus, 
exploring molecular pathways underlying suppression 
of immune responses in ovarian cancer to identify novel 
targets for immunotherapy and/or to identify markers 
that can predict the risk of ovarian cancer may be a 
route to both treating this deadly disease and/or earlier 
identification. 

 An important pathway to consider in immune 
function is suppression of host immune response by 
regulatory T (Treg) cells, a subset of CD4+ T cells that 
maintain immune tolerance and inhibit the development of 
an antitumor immune response. In fact, higher prevalence 
of Treg cells has been found in various cancers [7-12], 
including ovarian cancer [13-16], compared to controls. 
Treg cells have been detected in ovarian tumors [15], as 
well as in malignant ascites [13] and peripheral blood 
[16] of ovarian cancer patients. Further, an association 
of ovarian cancer outcomes with genetic variation in 
Treg-related genes specific to induction, trafficking, or 
immunosuppressive function of Treg cells, also suggests 
a role for the Treg cell phenotype in ovarian cancer [17]. 
Given the importance of inherited factors in both ovarian 
cancer and Treg cells, we sought to characterize their role 
in ovarian cancer etiology. We conducted a comprehensive 
epidemiological study in which we investigated the 
significance of single nucleotide polymorphisms (SNPs) 
in the Treg cell pathway and mRNA expression profiles in 
epithelial ovarian cancer (EOC) etiology. 

RESULTS

The descriptive characteristics of the study 
population are presented in Table 1. The majority of 
EOC patients (n = 9,330) were of the serous histology. 
Compared to controls, cases were significantly older 
and more likely to report a family history of breast or 
ovarian cancer and a personal history of endometriosis. 
Conversely, pregnancy, tubal ligation, breastfeeding, and 
use of oral contraceptives (OCs) were more likely to be 
reported by controls. 

Association of genetic variation by histotype

P-values for the gene burden test for each gene 
in the pathway and the Treg cell pathway (all SNPs 
analyzed together) by histotype (serous, high-grade 
serous, endometrioid, clear cell, invasive mucinous) are 
presented in Table 2. The most significant burden test (p = 
0.001) was seen with TGFBR2 and clear cell EOC. Other 
gene associations with histotypes at p < 0.05 included: 
IL12B (p = 0.005 and p = 0.008, serous and high-grade 
serous, respectively), IL8RA (p = 0.035, endometrioid 
and invasive mucinous), LGALS1 (p = 0.03, invasive 
mucinous), STAT5B (p = 0.022, clear cell), TGFBR1 (p 
= 0.021, endometrioid) and TGFBR2 (p = 0.017 and p = 
0.025, endometrioid and invasive mucinous, respectively). 
The most significant global associations for all genes in 
the Treg cell pathway were seen in endometrioid (p = 
0.082) and clear cell (p = 0.083) EOC.

Single SNP associations for each gene are shown 
in Supplemental Table 1. The effective number of 
independent SNPs tested was 370; applying a bonferroni 
correction for testing 370 SNPs across 5 groups, yields 
p < 2.7 x 10-5 as the significance threshold. No single 
SNPs remains significant after correction for multiple 
testing within histotype. The most single SNP association 
was seen with TGFBR2 and clear cell; the T allele in 
rs3773636 was associated with a 21% increased risk of 
clear cell ovarian cancer (OR = 1.21, 95% CI = 1.10-1.33, 
p = 0.0001).

eQTL in TGFBR2 associate with FCGR2B 
expression

TGFBR2 contained the SNP with the most 
significant association with risk of clear cell EOC and 
also contained several additional SNPs with suggestive 
associations with clear cell and mucinous EOC. 
Thus, SNPs in TGFBR2 were correlated with mRNA 
expression levels as measured by the 9,634 probes 
passing quality control (QC) and showing expression 
above the background in at least 25% of the samples 
[18]. Regression analyses showed the most significant 
association between rs1808602 and FCGR2B (PFDR < .05) 
with an adjusted r2 = 0.51 for a model including both SNP 
and histology; the variation attributable to the SNP alone 
was r2 = 0.45. Each additional copy of the minor (G) allele 
(minor allele frequency (MAF) = 42.4%) was associated 
with an increase in mRNA expression level of 0.51 in 
FCGR2B (Figure 1). This SNP-gene association was the 
only association significant after correction for multiple 
testing. 

DISCUSSION

Treg cells have been shown to suppress tumor 
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Figure 1: Association of variant alleles in TGFBR2 with circulating mRNA expression levels in FCGR2B. FCGR2B 
mRNA expression levels (y-axis) versus rs1808602 (x-axis). Each additional copy of the variant allele (G) in rs1808602 was associated 
with a significant increase in mRNA expression level after adjusting for age and histology.

Figure 2: Linkage disequilibrium structure and regional association map of TGFBR2  with risk of clear cell ovarian 
cancer. Each dot indicates a SNP, with the corresponding region on Chromosome 3 (x axis) and negative log10 p-value (y axis) associated 
with the SNP; color-coding reflects pairwise linkage disequilibrium. The purple dot is rs3773636, the most significant genetic association 
with clear cell ovarian cancer (p = 0.0001). It is located on Chromosome 3 at 30,690,658 bp (hg19) in TGFBR2.
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Table 1: Descriptive characteristics of 15,596 ovarian cancer cases and 23,236 controls from the Ovarian Cancer 
Association Consortium (OCAC)
Variable Case N = 15596 Control N = 23236 P value
Age1 57.36 (11.70) 55.61 (11.90) <0.0001
Ethnicity2

Non-Hispanic 13847 (99.6) 21539 (99.7) 0.03
Hispanic 56 (.4) 59 (.3)
Missing 1693 1638
Family history of ovarian cancer2

No 5891 (91.6) 7643 (95.7) <0.0001
Yes 543 (8.4) 343 (4.3)
Missing 9162 15250
Height1 1.64 (0.07) 1.63 (0.06) <0.0001
Missing 4571 6596
Weight1 57.2 (9.80) 56.4 (8.71)
Missing 6600 9277 <0.0001
Body Mass Index (BMI)1 21.29 (3.43) 21.18 (3.06) 0.01
Missing 6642 9311
Age at menarche1 12.8 (1.60) 12.9 (1.68) 0.02
Missing 4914 7195
Total number of pregnancies1 2.37(1.80) 2.63(1.74) <0.0001
Missing 4879 7066
Breast feeding2

No 3070 (40.5) 4078 (30.2) <0.0001
Yes 4502 (59.5) 9426 (69.8)
Missing 8024 9732
Menopausal status2

Pre/perimenopausal 3585 (32.4) 4519 (28) <0.0001
Post-menopausal 7491 (67.6) 11640 (72.0)
Missing 4520 7077
HRT2

No 2675 (44.3) 3237 (44.6) 0.73
Yes 3366 (55.7) 4025 (55.4)
Missing 9555 15974
OC use2

Never 4465 (41.9) 6054 (37.4) <0.0001
Ever 6191 (58.1) 10152 (62.6)
Missing 4940 7030
OC use in months1 38.21 (59.83) 49.40( 69.27) <0.0001
Missing 5164 7209
Tubal ligation2

No 8420 (84.4) 8278 (76.7) <0.0001
Yes 1562 (15.7) 2514 (23.3)
Missing 5614 12444
Endometriosis2

No 7435 (90.8) 10030 (93.2) <0.0001
Yes 755 (9.2) 731 (6.8)
Missing 7406 12475
Hysterectomy2

No 7352 (68.3) 13103 (81.2) <0.0001
Yes 3413 (31.7) 3025 (18.8)
Missing 4831 7108
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antigen specific immunity in ovarian cancer, in vitro and 
in vivo [13]. However, the role of Treg cells in the etiology 
of ovarian cancer is not well established. We attempted to 
evaluate robust genetic biomarkers associated with Treg 
cells in relation to EOC in a large sample pooled from 
the Ovarian Cancer Association Consortium (OCAC). We 
hypothesized that SNPs in genes that regulate the function 
of Treg cells could potentially be associated with variation 
in immune response to ovarian tumors. Hence, in this 
study we evaluated SNPs in 25 genes thought to govern 
the function of Treg cells to determine their association to 
EOC. We found a modest association between TGFBR2 
and invasive clear cell EOC. SNPs in this gene have been 
found to be associated with other pathological conditions, 
including gastric and colorectal cancer [19, 20]. The 
TGF-β family of cytokines plays an important role in 
proliferation, differentiation, and apoptosis of many cell 
types [21]. However, some tumors, such as ovarian tumors, 
evade the anti-proliferative effects of TGF-β by acquiring 
mutations in TGF-β signaling pathway [22]. Furthermore, 
the TGF-β signaling pathway plays a paradoxical role in 
tumorigenesis, initially suppressing and later promoting 
tumor growth and metastasis [23]. 

 The significant association of rs1808602 in 
TGFBR2 with lymphoblastoid cell line (LCL) mRNA 
expression of FCGR2B (FcγRIIB) adds evidence for 
an immune component in ovarian carcinogenesis. 
FCGR2B binds to the Fc component of the antigen-
IgG immune complex, suppressing immune response 

through several mechanisms, including inhibition 
of antigen presentation to T lymphocytes as well as 
reduced phagocytosis by neutrophils [24]. The only 
inhibitory receptor among members of the FcGR family 
in humans, FCGR2B, expressed on B lymphocytes [25] 
and follicular dendritic cells, is thought to be critical for 
maintenance of humoral immune response [26, 27]. The 
modest correlation between the TGFBR2 polymorphism 
and mRNA expression of FCGR2B observed suggests 
that TGF-β cytokine signaling pathway may, directly or 
indirectly through Treg cells, regulate the expression of 
FcGR, thereby potentially altering the balance between 
pro-inflammatory and anti-inflammatory immune 
response. Furthermore, the downstream inhibitory effect 
of FCGR2B expression is not limited to immune cells. 
Experimental models have demonstrated the potential of 
FCGR2B to promote tumorigenesis when expressed on 
non-lymphoid tumor cells [28, 29]. FCGR2B expression 
is thought to be a mechanism of immune escape by tumor 
cells [30]. Thus, our findings indicate that polymorphisms 
in TGFBR2 may potentially affect inter-individual 
variation in anti-tumor immune response through FcG 
receptor modulation. Additional evidence for Treg-cell-
related eQTL SNPs has been seen with survival in ovarian 
cancer [31, 32]. Specifically, genetic variation in CD80 
was associated with poorer survival of endometrioid cases 
and with increased tumor CD80 expression. The above 
findings suggest that inherited factors contributing to 
ovarian cancer etiology and outcome may, in part, drive 

Clinical characteristics Histology2

Serous 9330 (59.8)
Mucinous 1592 (10.2)
Endometrioid 2099 (13.5)
Clear cell 1033 (6.6)
Mixed Cell 505 (3.2)
Other 1037 (6.7)
Behavior2

LMP 1724 (11.1)
Invasive 13872 (88.9)
FIGO stage2 
1 3488 (31.7)
2 1147 (10.4)
3 5412 (49.2)
4 954 (8.7)
Grade2

Well differentiated 1240 (12.5)
Moderately differentiated 2427 (24.4)
Poorly differentiated 5591 (56.2)
Undifferentiated 699 (7.0)
Missing 5639  

1Mean (standard deviation), 2N(%), CI = Confidence interval, BMI = body mass index, HRT = hormone replacement therapy, 
OC = oral contraceptive, LMP = low malignant potential
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the expression of important immune-related genes.
 Further evaluation of the structure of TGFBR2 

showed that the rs3773636 SNP is in strong linkage 
disequilibrium (r2 = 1) with a SNP (rs995435) that is 
thought to likely affect binding of proteins such as HNF4A, 
EP300, and GATA2, all associated with the balance of 
cell differentiation [33] (Figure 2). This SNP resides in 
SMAD4 and ELF5 (an ETS-related transcription factor) 
motifs in a relatively important position. In addition, we 
find that rs1463535 in TGFBR2, ~2 Mb from rs3773636 
and independent of rs3773636, is associated (p < 8e-05) 
with expression of TGFBR2 in lymphoblastoid cell lines 
(p < 8e-05) [34]. 

Although we find relatively weak associations 
between SNPs in the Treg cell pathway and EOC etiology, 
we do see modest evidence that TGFBR2 contains an 
eQTL that is perhaps modulating expression of inhibitory 

immune-complex receptor genes. Thus, the Treg cell 
genetic hypothesis perhaps merits further investigation in 
a larger, more diverse population.

MATERIALS AND METHODS

SNP selection

An extensive literature review of studies examining 
the role of regulatory T cells in immune response was 
conducted in 2010, and genes relevant to the function of 
Treg cells were identified. Tag SNPs in 25 genes (MAF ≥ 
0.05),were selected using the SNP database on Genome 
Variation Server [35]. SNP selection parameters included 
an r2 > = 0.8 and the Centre d'Etude du Polymorphisme 

Table 2: Admixture maximum likelihood gene burden p-values for each gene in the Treg cell  pathway and overall 
considering all genes

Gene Serous (n = 9,330) High-grade serous 
(n = 5,792)

Endometrioid 
(n = 2,060)

Clear cell 
(n = 1,021)

Invasive Mucinous
(n = 933)

CTLA4 0.612 0.984 0.337 0.471 0.178
FCRL3 0.426 0.388 0.464 0.546 0.110
FOXP3 0.362 0.254 0.630 0.525 0.287
GZMB 0.484 0.203 0.220 0.931 0.847
HDAC9 0.679 0.864 0.212 0.398 0.990
IL12B 0.005 0.008 0.127 0.915 0.088
IL17RA 0.269 0.243 0.974 0.831 0.652
IL23A 0.137 0.111 0.990 0.431 0.561
IL23R 0.423 0.903 0.470 0.101 0.221
IL2RA 0.948 0.960 0.153 0.281 0.148
IL7 0.915 0.933 0.339 0.822 0.670
IL7R 0.558 0.562 0.296 0.459 0.670
IL8RA 0.118 0.084 0.035 0.344 0.035
LGALS1 0.222 0.054 0.841 0.520 0.030
LGALS9 0.958 0.949 0.649 0.885 0.081
PRKCQ 0.511 0.862 0.879 0.528 0.729
STAT5A 0.283 0.463 0.556 0.117 0.442
STAT5B 0.721 0.873 0.412 0.022 0.297
TGFB1 0.864 0.908 0.864 0.966 0.168
TGFB2 0.739 0.418 0.481 0.087 0.672
TGFB3 0.335 0.250 0.139 0.354 0.438
TGFBR1 0.378 0.398 0.021 0.504 0.493
TGFBR2 0.644 0.242 0.017 0.001 0.025
TGFBR3 0.068 0.256 0.446 0.295 0.366
TNFSF14 0.742 0.521 0.964 0.981 0.848

Treg cell gene pathway 0.444 0.719 0.082 0.083 0.632
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Humain (CEPH) reference population. The genomic 
region was expanded upstream and downstream (5 Kb) 
of each gene using linkage disequilibrium block structure 
to capture tag SNPs in regulatory regions. Tag SNPs were 
then assessed for design scores using Illumina’s Assay 
Design Tool for Infinium, and SNPs with a design score 
< 0.4 were excluded. SNPs were also excluded if the 
call rate was < 95%, if the test for deviation from Hardy 
Weinberg equilibrium proportions in controls was p < 10-

4, or if greater than 2% discordance in duplicate pairs was 
observed. Of the 1,358 SNPs from the Treg cell pathway 
that were included for genotyping, a total of 1,351 passed 
QC and were included in the analysis presented in this 
paper (Supplemental Table 2).

Study population, genotyping, and quality control

Germline DNA (250 ng genomic or 750 ng whole-
genome amplified) from a total of 15,596 ovarian cancer 
cases and 23,236 controls from 40 studies in the OCAC 
(Supplemental Table 3) was genotyped on a custom 
Illumina iSelect BeadArray. OCAC is an international, 
multidisciplinary consortium, comprising population-
based, hospital-based and nested case-control, and case-
only studies of ovarian cancer, conducted in the United 
States, Europe, Asia, and Australia. Genotype calling and 
quality control procedures were described previously [36, 
37]. Samples with a genotype call rate of < 95% were 
excluded. Hap Map samples from European (CEU, N = 
60), African (YRI, N = 53), and Asian (JPT+CHB, N = 
88) populations were used to estimate intercontinental 
ancestry for each individual using the Local Ancestry in 
Admixed Population (LAMP) program [38], and variation 
in population substructure was estimated using principal 
components (PCs). Only individuals with a LAMP score 
greater than 90% European ancestry were included in the 
present analyses. 

Statistical analyses

Logistic regression analyses in PLINK were used 
to test for evidence of additive associations of SNPs by 
histotype and restricted to invasive tumor behavior [39]. 
Evaluation of the scree plot of eigenvectors, derived 
using Eigenstrat, revealed that five PCs explained most 
of the variation in population substructure; the logistic 
regression models were adjusted accordingly for PCs, 
along with age. PC analysis was done using an in-house 
program written in C++ using the Intel MKL libraries 
for eigenvectors (available at http://ccge.medschl.cam.
ac.uk/software/) [40]. We used the approach of Li et al. to 
calculate the effective number of independent SNPs tested, 
and this value was then used in a Bonferroni correction 
to determine single SNP significance [41, 42]. Regional 

association plots for SNPs with significant associations 
were constructed using LocusZoom software [43]. 

Both gene-level tests of association and global 
Treg cell pathway analyses by ovarian cancer histotypes 
were conducted using the admixture likelihood (AML) 
method [40, 44]. The AML method assumes a proportion 
of variants in each gene or pathway (α) is associated 
with outcome. The effect size of each SNP is assumed 
to be on a non-central χ2 distribution with non-centrality 
parameter η, which approximately captures that SNP’s 
contribution to the total genetic variance of the outcome. 
To accommodate the correlation between SNPs in each 
gene, AML uses a pseudo-maximum likelihood method 
to estimate the α and η. For each gene-level and pathway-
level test, we performed 1,000 simulations, assuming that 
the maximum proportion of associated SNPs in each gene 
or pathway was 0.20. We report p-values for the AML 
trend test. 

Expression quantitative trait loci (eQTL) analysis 
in ovarian cancer patients

We measured trans and cis genotype associations 
with mRNA expression levels in LCL collected pre-
treatment from unrelated EOC cases enrolled in the 
Gilda Radner Ovarian Family Cancer Registry (GRR) 
at Roswell Park Cancer Institute (RPCI), a part of 
the larger OCAC study described above. Microarray-
based gene expression was assayed using the Illumina 
HumanHT-12v3 Gene Expression Beadchip, with almost 
50,000 probes derived from the National Center for 
Biotechnology Information Reference Sequence (NCBI) 
RefSeq (Build 36.2, Rel 22) and the UniGene (Build 
199) databases [45]. Beadscan was used to scan and 
extract the raw intensity and the data corrected by local 
background subtraction in GenomeStudio module. A 
quantile normalization algorithm in the lumi package in 
the R-based Bioconductor Package was used to normalize 
the log2 transformed intensity data. For data QC, we 
excluded the probes with detection P value > 0.05 (the P 
values were generated in BeadStudio software) in at least 
25% of the samples, yielding 9,634 genes (18). Both LCL 
mRNA levels and genotype data were available on 44 
patients with EOC from the GRR. Genes containing the 
SNPs most significantly associated with risk of EOC were 
selected for SNP-mRNA expression level analyses using 
linear regression adjusted for patient age and histotype. All 
analyses were corrected for multiple testing [46]. 
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