47 research outputs found

    Vanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow

    Full text link
    We establish the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. For the Navier-Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup-norm of solutions with respect to the physical viscosity coefficient may not be directly controllable and, furthermore, convex entropy-entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy-type estimates with respect to the viscosity coefficient for the solutions of the Navier-Stokes equations and establish the existence of measure-valued solutions of the isentropic Euler equations generated by the Navier-Stokes equations. Based on the uniform energy-type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier-Stokes equations for weak entropy-entropy flux pairs, generated by compactly supported C2C^2 test functions, are confined in a compact set in H1H^{-1}, which lead to the existence of measure-valued solutions that are confined by the Tartar-Murat commutator relation. A careful characterization of the unbounded support of the measure-valued solution confined by the commutator relation yields the reduction of the measure-valued solution to a Delta mass, which leads to the convergence of solutions of the Navier-Stokes equations to a finite-energy entropy solution of the isentropic Euler equations.Comment: 30 page

    Vanishing Viscosity Solutions of the Compressible Euler Equations with Spherical Symmetry and Large Initial Data

    Full text link
    We are concerned with spherically symmetric solutions of the Euler equations for multidimensional compressible fluids, which are motivated by many important physical situations. Various evidences indicate that spherically symmetric solutions of the compressible Euler equations may blow up near the origin at certain time under some circumstance. The central feature is the strengthening of waves as they move radially inward. A longstanding open, fundamental question is whether concentration could form at the origin. In this paper, we develop a method of vanishing viscosity and related estimate techniques for viscosity approximate solutions, and establish the convergence of the approximate solutions to a global finite-energy entropy solution of the compressible Euler equations with spherical symmetry and large initial data. This indicates that concentration does not form in the vanishing viscosity limit, even though the density may blow up at certain time. To achieve this, we first construct global smooth solutions of appropriate initial-boundary value problems for the Euler equations with designed viscosity terms, an approximate pressure function, and boundary conditions, and then we establish the strong convergence of the viscosity approximate solutions to a finite-energy entropy solutions of the Euler equations.Comment: 29 page

    Two Models of Speculative Bubbles Dynamics for Cryptocurrency Prices

    Get PDF
    The problem of investing into a cryptocurrency market requires good understanding of the processes that regulate the price of the currency. In this paper we offer a view of the cryptocurrency market as an environment for realization of self-organized speculative schemes that result in the formation of a characteristic price bubble. We use a microscale, agent-based model to simulate the system behavior and derive a macroscale ordinary differential equation (ODE) model to estimate the price and the return rates observed in the simulated agent-based model. We provide a formula for the total risk of the system expressed as a sum of two independent components, one being characteristic of the price bubble and the other of the investor behavior

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF
    corecore