273 research outputs found
Dimerization and auto-processing induce caspase-11 protease activation within the non-canonical inflammasome
Caspase-11 is a cytosolic sensor and protease that drives innate immune responses to the bacterial cell wall component, LPS. Caspase-11 provides defence against cytosolic Gram-negative bacteria; however, excessive caspase-11 responses contribute to murine endotoxic shock. Upon sensing LPS, caspase-11 assembles a higher order structure called the non-canonical inflammasome that enables the activation of caspase-11 protease function, leading to gasdermin D cleavage and cell death. The mechanism by which caspase-11 acquires protease function is, however, poorly defined. Here, we show that caspase-11 dimerization is necessary and sufficient for eliciting basal caspase-11 protease function, such as the ability to auto-cleave. We further show that during non-canonical inflammasome signalling, caspase-11 self-cleaves at site (D285) within the linker connecting the large and small enzymatic subunits. Self-cleavage at the D285 site is required to generate the fully active caspase-11 protease (proposed here to be p32/p10) that mediates gasdermin D cleavage, macrophage death, and NLRP3-dependent IL-1β production. This study provides a detailed molecular mechanism by which LPS induces caspase-11-driven inflammation and cell death to provide host defence against cytosolic bacterial infection
European Paediatric Formulation Initiative (EuPFI)-Formulating Ideas for Better Medicines for Children.
© American Association of Pharmaceutical Scientists 2016, published by Springer US, available online at doi: https://doi.org/10.1208/s12249-016-0584-1The European Paediatric Formulation Initiative (EuPFI), founded in 2007, aims to promote and facilitate the preparation of better and safe medicines for children through linking research and information dissemination. It brings together the capabilities of the industry, academics, hospitals, and regulators within a common platform in order to scope the solid understanding of the major issues, which will underpin the progress towards the future of paediatric medicines we want.The EuPFI was formed in parallel to the adoption of regulations within the EU and USA and has served as a community that drives research and dissemination through publications and the organisation of annual conferences. The membership and reach of this group have grown since its inception in 2007 and continue to develop and evolve to meet the continuing needs and ambitions of research into and development of age appropriate medicines. Five diverse workstreams (age-appropriate medicines, Biopharmaceutics, Administration Devices, Excipients and Taste Assessment & Taste Masking (TATM)) direct specific workpackages on behalf of the EuPFI. Furthermore, EuPFI interacts with multiple diverse professional groups across the globe to ensure efficient working in the area of paediatric medicines. Strong commitment and active involvement of all EuPFI stakeholders have proved to be vital to effectively address knowledge gaps related to paediatric medicines, discuss potential areas for further research and identify issues that need more attention and analysis in the future.Peer reviewedFinal Accepted Versio
High-Resolution Surface Analysis on Aluminum Oxide-Coated LiMnNiCoO with Improved Capacity Retention
JunB is required for endothelial cell morphogenesis by regulating core-binding factor β
The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis
Recommended from our members
LNK suppresses interferon signaling in melanoma.
LNK (SH2B3) is a key negative regulator of JAK-STAT signaling which has been extensively studied in malignant hematopoietic diseases. We found that LNK is significantly elevated in cutaneous melanoma; this elevation is correlated with hyperactive signaling of the RAS-RAF-MEK pathway. Elevated LNK enhances cell growth and survival in adverse conditions. Forced expression of LNK inhibits signaling by interferon-STAT1 and suppresses interferon (IFN) induced cell cycle arrest and cell apoptosis. In contrast, silencing LNK expression by either shRNA or CRISPR-Cas9 potentiates the killing effect of IFN. The IFN-LNK signaling is tightly regulated by a negative feedback mechanism; melanoma cells exposed to IFN upregulate expression of LNK to prevent overactivation of this signaling pathway. Our study reveals an unappreciated function of LNK in melanoma and highlights the critical role of the IFN-STAT1-LNK signaling axis in this potentially devastating disease. LNK may be further explored as a potential therapeutic target for melanoma immunotherapy
Dynamics, Alterations, and Consequences of Minimally Invasive Intraocular Pressure Elevation in Rats
Citation: Gramlich OW, Lueckner TCS, Kriechbaum M, et al. Dynamics, alterations, and consequences of minimally invasive intraocular pressure elevation in rats. Invest Ophthalmol Vis Sci. 2014;55:600-611. DOI: 10.1167/iovs. PURPOSE. An important, yet not exclusive, aspect of primary open angle glaucoma is elevated intraocular pressure (IOP) profiles within fluctuations and pressure peaks. The study aimed at establishing minimally invasive methods for recurrent IOP elevation in rats to investigate the impact of IOP dynamics and pathomorphologic retinal alterations during and after IOP elevation. METHODS. Intraocular pressure was elevated unilaterally in Long Evans rats to a level of »35 mm Hg for 1 hour in a total of 30 manipulations within 6 weeks, by using two methods: (1) suction-cup oculopression and (2) loop-adjusted oculopression. Retinal thickness (RT) was measured via optical coherence tomography (OCT), and neuronal survival was analyzed. Additional experiments were performed for ''in situ'' OCT investigations during exposures to different IOP levels. RESULTS. A mean IOP exposure of þ737.3 6 9.6 DIOP mm Hg for loop adjustment and þ188.9 6 16 DIOP mm Hg for suction cup was achieved. Optical coherence tomography examination revealed notable changes of RT between controls, untreated, and treated eyes, and evaluation of neuronal loss showed a significant decrease of retinal ganglion cell (RGC) density in both groups. In situ OCT investigation showed paradoxical retinal distortion and deformation of the optic nerve head toward the eye background. CONCLUSIONS. After accurate IOP elevation with minimally invasive methods, it was possible to detect RGC loss and retinal thinning. While suction cup is capable of simulating accurate arbitrary IOP profiles, loop adjustment enables the detection of pressure-dependent retinal alterations. For the first time, it was feasible to investigate consequences of variable IOP elevation profiles, including pressure peaks, by using real-time live imaging in vivo. Keywords: recurrent IOP elevation, OCT imaging, retinal degeneration, ''in situ'' imaging T he pathology of glaucoma is still subject to research. In general, it is considered a multifactorial, heterogeneous group of ocular diseases and is the second most common cause of human blindness worldwide. 1 Furthermore, it is defined by a progressive and irreversible loss of retinal ganglion cells (RGCs) and their axons, 2 which leads to visual field loss in more advanced stages. 3 Glaucoma is often associated with an elevated intraocular pressure (IOP), 4 but solely 60% to 75% of the patients who suffer from primary open angle glaucoma (POAG) show an IOP elevation of more than 21 mm Hg. 5 Several studies have demonstrated that an elevated IOP does not remain at a stable level, but rather that it underlies strong dynamics including IOP fluctuations, pressure peaks, and circadian variations of approximately 10% to 20% (up to 64 mm Hg). 6-8 Moreover, there are hints of a relationship between IOP fluctuations and increased mean IOP, which further impacts the visual field. 9-12 While half of these studies indicate a direct link to disease progression, others do not. On the other hand, the remaining 25% to 35% of the glaucoma patients suffering from normal tension glaucoma manifest glaucomatous symptoms without significant elevation of the IOP. 14 By now, numerous different hypotheses concerning the pathogenesis exist, but none is sufficient to elucidate the disease pattern on its own. It is assumed that the interaction of individual pathomechanisms, such as IOP-dependent and IOP-independent dysregulations of the ocular blood flow and retinal ischemia, lead to the final loss of RGCs. These pressureinduced dysfunctions and autoregulations in retinal blood vessels often lead to RGC loss by, for example, anoxia and reperfusion injury
Lactobacillus GG in inducing and maintaining remission of Crohn's disease
BACKGROUND: Experimental studies have shown that luminal antigens are involved in chronic intestinal inflammatory disorders such as Crohn's disease and ulcerative colitis. Alteration of the intestinal microflora by antibiotic or probiotic therapy may induce and maintain remission. The aim of this randomized, placebo-controlled trial was to determine the effect of oral Lactobacillus GG (L. GG) to induce or maintain medically induced remission. METHODS: Eleven patients with moderate to active Crohn's disease were enrolled in this trial to receive either L. GG (2 × 10(9 )CFU/day) or placebo for six months. All patients were started on a tapering steroid regime and received antibiotics for the week before the probiotic/placebo medication was initiated. The primary end point was sustained remission, defined as freedom from relapse at the 6 months follow-up visit. Relapse was defined as an increase in CDAI of >100 points. RESULTS: 5/11 patients finished the study, with 2 patients in each group in sustained remission. The median time to relapse was 16 ± 4 weeks in the L. GG group and 12 ± 4.3 weeks in the placebo group (p = 0.5). CONCLUSION: In this study we could not demonstrate a benefit of L. GG in inducing or maintaining medically induced remission in CD
Restriction endonuclease MvaI is a monomer that recognizes its target sequence asymmetrically
Restriction endonuclease MvaI recognizes the sequence CC/WGG (W stands for A or T, ‘/’ designates the cleavage site) and generates products with single nucleotide 5′-overhangs. The enzyme has been noted for its tolerance towards DNA modifications. Here, we report a biochemical characterization and crystal structures of MvaI in an apo-form and in a complex with target DNA at 1.5 Å resolution. Our results show that MvaI is a monomer and recognizes its pseudosymmetric target sequence asymmetrically. The enzyme consists of two lobes. The catalytic lobe anchors the active site residues Glu36, Asp50, Glu55 and Lys57 and contacts the bases from the minor grove side. The recognition lobe mediates all major grove interactions with the bases. The enzyme in the crystal is bound to the strand with T at the center of the recognition sequence. The crystal structure with calcium ions and DNA mimics the prereactive state. MvaI shows structural similarities to BcnI, which cleaves the related sequence CC/SGG and to MutH enzyme, which is a component of the DNA repair machinery, and nicks one DNA strand instead of making a double-strand break
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …