479 research outputs found

    Syn-orogenic high-temperature crustal melting: Geochronological and Nd-Sr-Pb isotope constraints from basement-derived granites (Central Damara Orogen, Namibia)

    Get PDF
    Major and trace element and Nd, Sr and Pb isotope data from c. 550 Ma-old gray granites and c. 510 Ma-old red leucogranites of the high-grade central part of the Damara orogen (Namibia) indicate a dominantly deep crustal origin. Moderately peraluminous gray granites are isotopically evolved (initial epsilon(Nd): C. - 17) and were likely derived from meta-igneous sources with late Archean to Paleoproterozoic crustal residence ages. Based on a comparison with experimental results, the granites were derived by partial melting of a granodioritic biotite gneiss at c. 900-950 degrees C and less than 10 kbar. Slightly peraluminous red leucogranites are also isotopically evolved (initial epsilon(Nd): - 15 to - 18) but have undergone extensive crystal fractionation coupled with minor contamination of mid crustal meta-pelitic material. Major and trace element data do not support closed-system fractional crystallization processes for all samples, however, some chemical features underline the importance of crystal fractionation processes especially for the leucogranites. Isotope data do not support mixing of different crust-derived melts or assimilation of crustal rocks by a mafic magma on a large scale. For the gray granites, unradiogenic Pb isotope compositions with substantial variation in Pb-207/Pb-204 at almost constant (206)pb/(204)pb, strongly negative epsilon(Nd) values and moderately radiogenic Sr isotope compositions argue for an undepleted nature of the source. High Rb/Sr ratios of the red leucogranites permit a comparison with the gray granites but similar initial ENd values indicate that the source of these granites is not fundamentally different to the source of the gray granites. The most acceptable model for both granite types involves partial melting of meta-igneous basement rocks of Archean to Proterozoic age. The consistency of the chemical data with a crustal anatectic origin and the observation that the gray granites intruded before the first peak of high-grade regional metamorphism suggests that they intruded simultaneously with crustal thickening. The red leucogranites are interpreted to be a result of crustal melting during the main peak of regional metamorphism. The heating events that promoted melting of fertile deep-crustal rocks might have been caused by the inferred high heat productivity of heat-producing radioactive elements (Th, U, K) together with crustal thickening during the main periods of orogen

    Structural, petrological and chemical analysis of syn-kinematic migmatites: insights from the Western Gneiss Region, Norway.

    Get PDF
    International audienceEvidence of melting is presented from the Western Gneiss Region (WGR) in the core of the Caledonian orogen, Western Norway and the dynamic significance of melting for the evolution of orogens is evaluated. Multiphase inclusions in garnets that comprise plagioclase, potassic feldspar and biotite are interpreted to be formed from melt trapped during garnet growth in the eclogite facies. The multiphase inclusions are associated with rocks that preserve macroscopic evidence of melting, such as segregations in mafic rocks, leucosomes and pegmatites hosted in mafic rocks and in gneisses. Based on field studies, these lithologies are found in three structural positions: (1) as zoned segregations found in high-pressure (HP) (ultra) mafic bodies, (2) as leucosomes along amphibolite facies foliation and in a variety of discordant structures in gneiss, and (3) as undeformed pegmatites cutting the main Caledonian structures. Segregations post-date the eclogite facies foliation and predate the amphibolite facies deformation, whereas leucosomes are contemporaneous with the amphibolite facies deformation and undeformed pegmatites are post-kinematic and were formed at the end of the deformation history. Geochemistry of the segregations, leucosomes and pegmatites in the WGR defines two trends, which correlate with the mafic or felsic nature of the host rocks. The first trend with Ca-poor compositions represents leucosome and pegmatite hosted in felsic gneiss, whereas the second group with K-poor compositions corresponds to segregation hosted in (ultra) mafic rocks. These trends suggest partial melting of two separate sources: the felsic gneisses and also the included mafic eclogites. The REE patterns of the samples allow distinction between melt compositions, fractionated liquids and cumulates. Melting began at high pressure and affected most lithologies in the WGR before or during their retrogression in the amphibolite facies. During this stage, the presence of melt may have acted as a weakening mechanism that enabled decoupling of the exhuming crust around the peak pressure conditions triggering exhumation of the upward-buoyant crust. Partial melting of both felsic and mafic sources at temperatures below 800°C implies the presence of an H2O-rich fluid phase at great depth to facilitate H2O-present partial melting

    The chlorite proximitor: A new tool for detecting porphyry ore deposits

    Get PDF
    publisher: Elsevier articletitle: The chlorite proximitor: A new tool for detecting porphyry ore deposits journaltitle: Journal of Geochemical Exploration articlelink: http://dx.doi.org/10.1016/j.gexplo.2015.01.005 content_type: article copyright: Crown copyright © 2015 Published by Elsevier B.V.Copyright © 2016 Elsevier B.V. or its licensors or contributors. ScienceDirect ® is a registered trademark of Elsevier B.V. [Creative Commons License 4.0]. The attached file is the published version of the article

    Effect of fluorine on near-liquidus phase equilibria of an Fe–Mg rich basalt

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 312-313 (2012): 118-126, doi:10.1016/j.chemgeo.2012.04.015.Volatile species (H2O, CO2, F, Cl, etc) have important effects on the formation and crystallization history of basaltic magmas. Here, we have experimentally investigated the effects of F on phase equilibria of Fe-Mg-rich basalt. Our results show that fluorine has large effects on the liquidus temperature and the chemistry of crystallizing minerals. Compared to the F-free system, addition of ~2 wt.% F moves the olivine-pigeonite liquidus point down ~2 kbar and 95 °C (from 12 kbar, 1375 °C to 10 kbar, 1280 °C). With increasing fluorine concentrations, dramatically increases for both pyroxene and olivine, suggesting that fluorine in basaltic magmas complexes primarily with MgO. Complexing with MgO in the melt decreases its MgO activity, and forces the crystallizing minerals to greater Fe/Mg, and so increases . Models of basalt generation, where the magma is fluorine-rich, need to include the effect of not only water but fluorine on liquidus depression and minerals crystallizing/melting. Our results suggest that fluorine may significantly aid in the petrogenesis of silica-poor, alkali-rich magmas in the Earth and Mars.This work was supported by NASA MFR grant # NNX09AL25G to A.H. Treiman and J. Filiberto, a Lunar and Planetary Institute summer internship to J. Wood, and a Packard fellowship for science and engineering to R. Dasgupta

    Mantle and crustal sources in the genesis of late-hercynian granitoids (NW Portugal) : geochemical and Sr-Nd isotopic constraints

    Get PDF
    Large volumes of granitoids were emplaced in the Hercynian Central Iberian Zone during the last ductile deformation phase (D3, 300-320 Ma). The biotite-rich granitoids are the most abundant: (1) syn-D3 granodiorites-monzogranites (313-319 Ma) with calc-alkaline and aluminopotassic affinities; (2) late-D3 granodiorites-monzogranites (306-311 Ma), related to subalkaline and aluminopotassic series. These granitoids are associated with coeval gabbro-norite to granodiorite bodies and/or mafic microgranular enclaves. Both granitoids and basic-intermediate rocks show petrological, geochemical and isotopic evidence of interaction between felsic and mafic magmas. The mantle-derived melts, represented by shoshonitic gabbro-norites, were probably derived from an enriched and isotopically homogeneous source (Srl = 0.7049 to 0.7053, eNd= -2.1 to -2.5). In some syn- and late-D3 plutons there are evidences of essentially crustal granites, represented by moderately peraluminous monzogranites of aluminopotassic affinity. They have similar Nd model ages (1.4 Ga) but different isotopic compositions (Srl = 0.7089 to 0.7106, eNd= -5.6 to -6.8), revealing a heterogeneous crust. Potential protoliths are metasedimentary (immature sediments) and/or fclsic meta-igneous lower crust materials. Large amounts of hybrid magmas were generated by the interaction of these coeval mantle- and crust-derived liquids, giving rise to slightly peraluminous monzogranites/granodiorites of calc-alkaline and subalkaline affinities, which display more depleted isotopic compositions than the crustal end-members (Sr, = 0.7064 to 0.7085, eNd = -4.4 to -6.2). Petrogenetic processes involving mingling and/or mixing and fractional crystallization (at variable degrees) in multiple reservoirs are suggested. A major crustal growth event occurred in late-Hercynian times (305-320 Ma) related to the input of juvenile mantle magmas and leading to the genesis of composite calc-alkaline and subalkaline plutons, largely represented in the Central Iberian Zone.Financial support was provided by FCT (project PRAXIS 2/2.1/391/94), France-Portugal Scientific Cooperation Programs and by the University of Minho

    Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow

    Get PDF
    There is considerable controversy over the nature of geophysically recognized low-velocity-high-conductivity zones (LV-HCZs) within the Tibetan crust, and their role in models for the development of the Tibetan Plateau. Here we report petrological and geochemical data on magmas erupted 4.7-0.3 Myr ago in central and northern Tibet, demonstrating that they were generated by partial melting of crustal rocks at temperatures of 700-1,050°C and pressures of 0.5-1.5 GPa. Thus Pliocene-Quaternary melting of crustal rocks occurred at depths of 15-50 km in areas where the LV-HCZs have been recognized. This provides new petrological evidence that the LV-HCZs are sources of partial melt. It is inferred that crustal melting played a key role in triggering crustal weakening and outward crustal flow in the expansion of the Tibetan Plateau

    Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton

    Get PDF
    The Tarim Craton, located in the center of Asia, was involved in the assembly and breakup of the Rodinia supercontinent during the Neoproterozoic and the subduction-accretion of the Central Asian Orogenic Belt (CAOB) during the Paleozoic. However, its tectonic evolution during these events is controversial, and a link between the Neoproterozoic and Paleozoic tectonic processes is missing. Here we present zircon U-Pb ages, Hf isotopes, and whole-rock geochemical data for the extensive granitoids in the western Kuruktag area, northeastern Tarim Craton. Three distinct periods of granitoid magmatism are evident: circa 830–820 Ma, 660–630 Ma, and 420–400 Ma. The magma sources, melting conditions (pressure, temperature, and water availability), and tectonic settings of various granitoids from each period are determined. Based on our results and the geological, geochronological, geochemical, and isotopic data from adjacent areas, a long-lived accretionary orogenic model is proposed. This model involves an early phase (circa 950–780 Ma) of southward advancing accretion from the Tianshan to northern Tarim and a late phase (circa 780–600 Ma) of northward retreating accretion, followed by back-arc opening and subsequent bidirectional subduction (circa 460–400 Ma) of a composite back-arc basin (i.e., the South Tianshan Ocean). Our model highlights a long-lived accretionary history of the southwestern CAOB, which may have initiated as part of the circum-Rodinia subduction zone and was comparable with events occurring at the southern margin of the Siberian Craton, thus challenging the traditional southward migrating accretionary models for the CAOB

    Effects of shock and Martian alteration on Tissint hydrogen isotope ratios and water content

    Get PDF
    publisher: Elsevier articletitle: Effects of shock and Martian alteration on Tissint hydrogen isotope ratios and water content journaltitle: Geochimica et Cosmochimica Acta articlelink: http://dx.doi.org/10.1016/j.gca.2016.12.035 content_type: article copyright: © 2017 The Authors. Published by Elsevier Ltd.© 2017 The Authors. Published by Elsevier Ltd. This is an open access article, available to all readers online, published under a creative commons licensing (https://creativecommons.org/licenses/by/4.0/). The attached file is the published version of the article
    corecore