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The major, minor and trace element chemistry of chlorite were evaluated as a tool for mineral exploration in the
propylitic environment of porphyry ore deposits. Chlorite from eighty propylitically altered samples, located up
to 5 km from the Batu Hijau Cu–Au porphyry deposit in Indonesia, was analyzed using electron microprobe and
laser ablation inductively-coupled plasma mass spectrometry. The results show that a variety of elements, in-
cludingK, Li,Mg, Ca, Sr, Ba, Ti, V,Mn, Co, Ni, Zn and Pb, are probably incorporated in the chlorite lattice anddisplay
systematic spatial variations relative to theporphyry center. Ti, V andMgdecrease exponentially in concentration
with increasing distance,whereas the others increase. Ratioing the former to the latter provides a variety of ratios
that vary up to four orders of magnitude, providing sensitive vectoring parameters. Chlorite geothermometry
suggests that Ti is substituted into chlorite as a function of crystallization temperature and thus maps out the
thermal anomaly associated with the mineralized center. By contrast, Mn and Zn display a maximum in chlorite
at a distance of ~1.3 km that mirrors the whole rock anomaly for these metals, reflecting their lateral advection
into the wall rocks by magmatic-hydrothermal fluids. The recognizable footprint defined by chlorite composi-
tions extends to at least 4.5 km, significantly beyond the whole rock anomalism (≤1.5 km) and thus represents
a powerful new exploration tool for detecting porphyry systems. Variations in chlorite chemistry are very sys-
tematic in the inner propylitic zone (to distances of ~2.5 km), thereby providing a precise vectoring tool in a do-
main where other tools are typically ineffective. In this zone, equations of the form:

x ¼
ln R

.
a

n o

b

can be formulated, where the distance to center, x, is predicted based on a variety of element ratios in chlorite R,
and where a and b are exponential fit parameters. Importantly, distal chlorite compositions in porphyry-related
propylitic alteration systems are also shown to be distinct from metamorphic chlorite, allowing the external
fringes of porphyry-related hydrothermal systems to be distinguished from “background” regional metamor-
phism or geothermal alteration.

© 2015 Published by Elsevier B.V.
1. Introduction

Porphyry ore deposits represent remarkable accumulations of
metals, in particular Cu, Mo and Au, which are precipitated from hydro-
thermal fluids in an intrusive host and surrounding country rocks.
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Deposits are typically centered within an alteration halo that displays
characteristic mineralogical and chemical zoning patterns (Lowell &
Guilbert, 1970). This footprint is a key guide for exploration, providing
a larger (up to 10 km radius) target area within which mineralization
may exist. However, the mineral assemblages that characterize these
alteration zones may be present within barren hydrothermal systems,
or produced by processes such as regional metamorphism. Discriminat-
ing mineralized and barren environments, locating hydrothermal cen-
ters within or beneath a zone of altered rocks, and recognizing the
fringes of ore systems continue to be great challenges to the exploration
industry. From a scientific standpoint, the controls on the formation of
these huge alteration zones are incompletely understood.

Here, we presentmicroprobe and laser ablation inductively-coupled
plasma mass spectrometry (LA-ICP-MS) analyses of chlorite from the
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propylitic alteration halo of the giant Batu Hijau porphyry copper–gold
deposit in Indonesia. The results represent a breakthrough for
exploration because they show that the chemistry of chlorite, one of
the most common alteration minerals in hydrothermal systems, varies
systematically and can be used as a tool to determine the direction
towards, and estimate the distance from, mineralized intrusions.
Chlorite geothermometry suggests that some trace elements (e.g., Ti)
may be controlled by crystallization temperature, reflecting conduction
and advection of heat away from a magmatic-hydrothermal center.
Anomalous concentrations of metals that are typically enriched in
porphyry magmatic-hydrothermal fluids indicate either that fluxes of
magmatic fluids influence amuch larger volume of rock than previously
thought, or extensive outward remobilization or dispersion of
magmatic metals occurs via circulating formation waters at elevated
temperature. Chlorite compositions from the distal fringes of the
porphyry system are also distinct from metamorphic chlorites,
providing a practical environmental discriminator.

2. The green rock environment

The ‘green rock’ environment of propylitic alteration, in which
hydrothermal minerals such as actinolite, albite, epidote, calcite
and chlorite form, typically represents the most distal, weakest
imprint of hydrothermal activity. Such alteration may develop in a
wide range of ore deposit systems, including porphyry Cu, Cu–Mo
or Cu–Au, epithermal Au–Ag, and during retrograde alteration of
skarns (Cooke et al., 2014; Dilles et al., 1992; Gustafson & Hunt,
1975; Lowell & Guilbert, 1970; Meinert, 1992; Schwartz, 1947;
Seedorff et al., 2005; Sillitoe, 2000, 2010; Simmons et al., 2005).
Traditionally, this domain has been one of the most difficult to
explore within because the weak alteration intensity commonly
renders conventional geochemical and geophysical techniques
ineffective for locating mineralization.

In porphyry systems, propylitic alteration is nowgenerally regarded as
temporally equivalent to the higher temperature potassic zone (e.g.,
Sillitoe, 2010). Propylitic alteration has been subdivided into several sub-
zones (e.g., Ballantyne, 1981; Cooke et al., 2014; Norman et al., 1991),
with an inner, high temperature subzone (actinolite–epidote–chlorite),
grading outward into intermediate (epidote–chlorite–calcite) and then
distal subzones (chlorite–calcite–hematite). These assemblages have
been mapped in detail in several porphyry systems (Garwin, 2000,
2002; Norman et al., 1991) and in contemporary geothermal environ-
ments (Rae et al., 2003).

Propylitic alteration is tacitly considered to be quite well
understood, yet there is a paucity of research, particularly in the
recent literature, on chemical mass transfer or isotope systematics
that might constrain the relative roles of magmatic, meteoric and
formation waters in its development. One study of the Ann Mason
porphyry in the Yerington district, Nevada, documented oxygen
and hydrogen isotope compositions of propylitically altered samples
that were indistinguishable from primary igneous rocks (Dilles et al.,
1992), with calculated oxygen and hydrogen fluid compositions
consistent with either magmatic–meteoric fluid mixtures or cooling
and equilibration of magmatic fluids with country rocks. In contrast,
Norman et al. (1991) showed that at Tintic, Utah, there were
systematic variations in chlorite and epidote major element
compositions within the various propylitic subzones and in the
oxygen and hydrogen isotope compositions of altered rocks and
propylitic minerals, with an outward decrease in δ18O and δD. This
was attributed to the mixing between unevolved meteoric water
on the fringes of the system with isotopically-exchanged meteoric
water in the core of the system (or possibly a late incursion of
magmatic water), apparently influenced by the prevailing view at
the time that meteoric waters dominated much of the life of
porphyry-hydrothermal systems (Sheppard et al., 1971). Such data
today would probably be interpreted as reflecting the mixing
Please cite this article as:Wilkinson, J.J., et al., The chlorite proximitor: A ne
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between primary magmatic waters and unevolved meteoric waters
during the initial phase of potassic–propylitic alteration. At
Bingham, Utah, Bowman et al. (1987) documented a number of sys-
tematic changes with increasing distance from the deposit:
(1) changes in the major element composition of biotite, epidote
and chlorite; (2) decreases in fluid inclusion homogenization tem-
peratures and salinities; and (3) decreasing calculated δ18OH2O and
increasing δDH2O. These patterns were interpreted in terms of either
mixing between magmatic fluids and an increasing proportion out-
wards of formation water enriched in deuterium, or isotopic ex-
change of meteoric water with igneous rock at low water/rock
ratios over a range of temperatures. Again, the possibility that the
calculated isotope compositions of fluids could be explained purely
by magmatic fluids undergoing cooling and exchange with host
rocks at decreasing temperature, although modeled as viable, was
not considered likely.

Studies of the trace element chemistry of propylitic minerals in
porphyry systems are limited. In particular, we are not aware of
any detailed studies utilizing LA-ICP-MS which delivers much
lower limits of detection than other routine methods. To test the po-
tential of trace element chemistry of propylitic minerals as a monitor
of hydrothermal processes in the proximal to distal alteration zones
associated with intrusion-centered hydrothermal systems, we
carried out a detailed study of the Batu Hijau porphyry copper–
gold system on Sumbawa Island in Nusa Tenggara Barat Province,
eastern Indonesia (Fig. 1).

3. Geological setting

Batu Hijau formed at ~3.7 Ma during collision between the
Indian–Australian plate and the Timorese segment of the Banda
arc, is possibly linked to subduction of the Roo Rise (Garwin, 2002).
The Banda arc in this region consists of: (1) a Late Oligocene to
Early Miocene calc-alkaline basaltic–andesitic arc (the “Old
Andesites” of van Bemmelen (1949)); (2) a Middle Miocene to
Pliocene calc-alkaline arc composed of basaltic to andesitic volcanic
rocks and intrusions of calc-alkaline and tholeiitic affinity
(Hamilton, 1979; Hutchison, 1989; Soerja-Atmadja et al., 1994);
and (3) Quaternary basaltic to dacitic, and locally rhyolitic, volcanic
cover. Batu Hijau is a classic example of a giant porphyry copper–
gold deposit, containing 1.64 billion tonnes of ore at average grades
of 0.44% Cu and 0.35 g/t Au.

The Batu Hijau district is located within a relatively uplifted block,
and is within 30 km of a major arc-transverse, left-lateral oblique-slip
fault zone, the trace of which coincides with the surface projection of
an inferred tear or kink in the subducting slab. This fault controls the dis-
tribution of volcanosedimentary units, the location of Neogene
intrusions and the present coastline of the island. The oldest exposed
rock sequence comprises volcanic sandstone with minor volcanic
mudstone and local limestones biostratigraphically dated at 21–15 Ma
(Adams, 1984; Berggren et al., 1995). This is overlain by volcanic lithic
breccia with minor volcanic sandstone and conglomerate. A variety
of intermediate, hypabyssal intrusions were emplaced into this
sequence between ~15 and 4 Ma (Garwin, 2000). Porphyritic horn-
blende tonalite was emplaced between 5.0 and 4.7 Ma, and porphyritic
dacite about 3.9 Ma. At 3.8–3.7 Ma, the tonalite porphyry stock related
to the Batu Hijau mineralization was emplaced. This is a subvertical,
cylindrical, composite intrusion about 200–300 m in diameter,
consisting of pre-mineralization “old tonalite”, syn-mineralization
“intermediate tonalite” and post-main mineralization “young tonalite”.
Late in the igneous evolution, an andesitic diatreme formed in the
center of the Batu Hijau district.

Batu Hijau provides an ideal setting for a study of alteration
mineral chemistry because it consists of a simple, strongly mineral-
ized tonalite intrusion emplaced into a relatively homogeneous
intermediate volcanic rock sequence that developed a classically
w tool for detecting porphyry ore deposits, J. Geochem. Explor. (2015),
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Fig. 1.Map showing the location of Batu Hijau on Sumbawa Island, Indonesia, north of the Java Trench.
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zoned hydrothermal alteration pattern (Fig. 2). Alteration consists
of: (1) a core of intense biotite alteration (~400 m diameter)
centered on the host tonalite porphyries; (2) an outer zone of weaker
secondary biotite (extending an additional 500 m); (3) a high tempera-
ture propylitic sub-zone comprising actinolite ± epidote (veins and
replacement) ± chlorite that forms a west-northwesterly-trending
zone between Batu Hijau and the Sekongkang porphyry prospect
(Fig. 2); (4) an intermediate temperature, epidote (replacement of
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plagioclase) ± chlorite zone that forms a broad alteration halo
around the mineralized centers; and (5) a low temperature, epidote
absent, chlorite zone (Garwin, 2002; Fig. 2). Hydrothermal pyrite ex-
tends approximately 1.5 km from the deposit center (Fig. 2). A com-
plicating factor in the alteration history of the area, in addition to the
weakly mineralized Sekongkang system, includes the presence of an
epithermal vein system at Bambu, ~3 km to the west-southwest of
Batu Hijau (Fig. 2).
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Epidote mostly occurs in the actinolite and epidote zones, where
it typically occurs as patchy replacements (N20%) of plagioclase
or hornblende phenocrysts or in pyrite- or quartz-bearing veins.
In the outer epidote zone, less than 20% of the feldspar and
mafic phenocrysts have been replaced and veins are rare, thin
and discontinuous. Chlorite is observed in almost all of the
rocks sampled, including slightly abnormal composition grains
overprinting biotite in the inner biotite zone (see Section 5.1.1).
Calcite is sporadic and the distribution irregular. Albite was rarely
identified.

4. Methods

Eighty samples, principally of porphyritic andesite and volcanic
lithic breccia (basalt to basaltic–andesite composition), plus two
limestones and five samples of the ore-hosting tonalites, were
collected from outcrop and drill core in a series of traverses away
from the deposit from within the weak biotite, actinolite, epidote
and chlorite propylitic sub-zones (Fig. 2). Sixty samples were
subject to whole rock geochemical analysis (AA lithogeochemical
package, ACME Laboratories, Vancouver). Sub-samples containing
minerals of interest were prepared as polished resin mounts for
SEM backscattered electron imaging of mineral relationships,
electron microprobe wavelength dispersive analysis (EMP-WDS)
and laser ablation inductively-coupled-plasma mass spectrometry
(LA-ICP-MS).

Major and minor elements in individual chlorite grains were
determined using a Cameca SX100 electron microprobe housed in
the Central Science Laboratories at the University of Tasmania.
Major, minor and trace elements in the same grains were measured
using a New Wave 193 nm solid-state laser coupled to an Agilent
7500cs quadrupole mass spectrometer, located in the School of
Physical Sciences, Discipline of Earth Sciences, University of
Tasmania. Typically, 5–10 spot analyses were acquired from each
sample, from within 3–5 separate chlorite grains. In total, 527 LA-
ICP-MS spot analyses meeting quality control criteria were obtained.
Aluminium concentration determined by microprobe was used as
the internal standard and NIST612 standard reference material was
used for external calibration of the LA-ICP-MS results according to
standard practice.

5. Results

Using standard classification criteria, chlorite compositions
determined by microprobe correspond to ripidolites, with (on aver-
age) equimolar proportions of Fe andMg (Fe/Fe +Mg= 0.51± 0.07
(1σ)). The only minor element consistently detected by microprobe
was Mn with an average concentration of 0.44 wt.%. Laser ablation
ICP-MS results are summarized as sample averages in Table 1. LA-
ICP-MS detected Li, Na, Mg, Al, Si, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn,
Ga, Sr, Y, Ba and Pb in more than 75% of the analyses and therefore
these elements were the focus of the spatial interrogation of the data.

Backscattered electron imaging and laser ablation element maps of
chlorite grains show that they are internally homogeneous (Fig. 3)
and that distinct variations in trace element chemistry probably reflect
true substitution into the crystal lattice, rather than the presence of
microinclusions. This is supported by the flat traces typically observed
during LA-ICP-MS spot analysis. Inclusions of otherminerals, particular-
ly calcite, titanite and zircon, were encountered but these parts of the
Fig. 3. Laser ablation ICP-MS element maps of chlorite from Batu Hijau. A. Proximal sample SBD
by light pink areas in Mg and Al images) which is relatively enriched in Ti and low in Ca, Sr and
ablation crater from spot analysis. B. More distal sample BH04-52-C1a, 1920m from the center
and higher Ca, Sr and Ba. Note the three circles in the center of the grain indicating the presen
grain boundaries. (For interpretation of the references to color in this figure legend, the reader
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signal were avoided during signal integration or, if heavily contaminat-
ed, the analysis was discarded.

5.1. Spatial variations in chlorite composition

5.1.1. Major and trace element concentrations
In map view, a number of chlorite compositional parameters

show systematic spatial variability relative to the Batu Hijau center,
particularly within a 2.5 km radius of the deposit. Notably, Ti and Sr
are enriched and depleted respectively in chlorite proximal to the
deposit (Fig. 4). Inspection of the Ti data suggests that samples locat-
ed at distances greater than 3 km from Batu Hijau along the south-
west sampling traverse do not fit the systematic pattern around
the deposit and may be related to other factors (e.g., a protolith con-
trol, or proximity to an unknown, buried intrusion). The data also in-
dicate that Ti concentrations are relatively high at a given distance
from the deposit on the western sampling traverse; conversely, Sr
concentrations are unusually low on this traverse. This suggests a
degree of asymmetry in the pattern of trace element substitution in
propylitic chlorite around Batu Hijau.

Plotting element concentrations as a function of radial distance
from the center of the porphyry system reveals a number of
patterns (Fig. 5). These can be divided into: (1) decreasing outward;
(2) increasing outward; and (3) displaying a marked shoulder, or
maximum, at a certain distance from the center of the system.
Among group 1 elements, the most pronounced trend is the
enrichment of Ti in proximal chlorite (Fig. 5A), which is mirrored
by Mg. Other elements that decrease outward but with a greater
degree of scatter are Al and V (Fig. 5B). In group 2, Li concentrations
in chlorite increase sharply with distance in the more proximal
samples and then level off, whereas Ca (Fig. 5C), Sr (Fig. 5D) and
Ba appear to rapidly increase to about 1.5 km (similar to Li), with
a lower rate of increase out to the limit of sampling (5 km). Boron
shows a slight increase out to about 3 km. Group 3 elements are
principally Mn, Fe (Fig. 5E) and Zn (Fig. 5F) which show evidence
for an enrichment halo, or annulus, with peak concentrations at a
distance of 1–1.5 km. Similar patterns of proximal Mg enrichment
and more distal Fe and Mn enrichment in chlorite, determined by
microprobe analysis, were previously reported from the Southwest
Tintic district (Norman et al., 1991).

Chlorite compositions for a number of samples plot off the trends
defined by the majority of the data and these are highlighted in Fig. 5.
These include the most proximal samples, hosted by the pre- and
post-mainstage mineralization tonalites from within 500 m of the
center of the Batu Hijau orebody (which also yielded anomalous
chlorite crystallization temperatures), samples from the vicinity of the
Bambu epithermal veins, and samples from the western traverse as
noted for Ti and Sr above.

5.1.2. Major and trace element ratios
In order to enhance compositional variations for the purposes of

exploration applications, elements showing decreasing concentra-
tion outward patterns were ratioed to those showing increasing
concentration outward patterns. These ratios typically decay
exponentially as a function of distance out to a certain radius, at
which point they stabilize at what is assumed to be the limit of the
imprint of hydrothermal alteration where a transition to “back-
ground” occurs (Fig. 6). These ratios vary over a significant range of
up to four orders of magnitude within the chlorite compositional
284-95-C1b, 1085m from the deposit center, shows homogeneous chlorite grain (defined
Ba. Note the small circle, upper-right, which indicates the presence of a pre-existing laser
, illustrates a chlorite grain (best illustrated by the red area in the Fe images) with lower Ti
ce of pre-existing laser ablation craters and the artifacts that are sometimes introduced at
is referred to the web version of this article.).
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halo attributable to the Batu Hijau center and show good
exponential fit statistics with r2 values of 0.65 to 0.82. Most ratios
show systematic decreases out to ~2.5 km but some appear to
extend further, to ~5 km (Table 2).

It is noteworthy that the slope of the exponential relationship
appears to be a function of the orientation of the sample transect
with respect to the Batu Hijau center. Traverses to the north, south
and southwest of Batu Hijau display similar steep slopes whereas
the series of samples to the west, following the inner propylitic
(actinolite- ± epidote- ± chlorite) alteration zone noted earlier
(Fig. 2), define a shallower slope (e.g., Fig. 6A). This behavior is
consistent with a temperature control of trace element substitution,
assuming that the higher temperature propylitic zone reflects the
subsurface trace of a buried, elongate intrusion. If correct, these
ratios effectively map out the thermal gradient around the main
mineralized intrusive system at Batu Hijau, and potentially a more
extensively developed underlying batholith. The changes in gradient
noted in the Ca, Sr and Ba data may be reflecting both themore prox-
imal anomaly attributable to Batu Hijau itself and the broader ther-
mal anomaly associated with a deeper, larger scale intrusive system.
Please cite this article as:Wilkinson, J.J., et al., The chlorite proximitor: A ne
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5.2. Chlorite geothermometry

To test the hypothesis that temperature is the principal control of Ti
variations in chlorite,we have computed crystallization temperatures of
the chlorite grains analyzed using the six component thermodynamic
model of Walshe (1986). This model requires knowledge of the
concentrations of major substituting species (SiO2 Al2O3 Fe2O3 FeO
MnO MgO Na2O K2O TiO2 Cr2O3 CaO) which we have obtained from
microprobe analysis.

Calculated temperatures range from 43–347 °C (Table 1). The upper
end of the temperature range is consistent with the observed
coexistence of chlorite with biotite and/or actinolite and with previous
estimates of crystallization temperatures in the inner propylitic zone
(e.g., Ballantyne, 1981; Bowman et al., 1987). The lowest temperatures
are assumed to be underestimated, probably reflecting a breakdown of
the thermodynamic model at low temperatures, but the strong system-
atic spatial variations suggest that the trend towards lower temperature
chlorite crystallization in these samples is real.

There is a good positive correlation (r2 = 0.719) between chlo-
rite crystallization temperature and radial distance from the Batu
Hijau center (excluding Sekongkang, Bambu and proximal
tonalite/skarn samples), supporting the inference that these
propylitic chlorites formed within the influence of the Batu Hijau
hydrothermal system (Fig. 7). As with their trace element composi-
tions, the proximal, tonalite- and skarn-hosted chlorite grains are
anomalous, in having lower than expected calculated crystallization
temperatures. The fact that these are observed in pre-, syn- and
post-main stage mineralization tonalite and skarn samples implies
that they represent a late chlorite-forming event, perhaps reflecting
a final thermal collapse of the system that only affected the central
ore zone.

In map view, the contoured chlorite thermometry data define a
marked thermal high associated with Batu Hijau (Fig. 8) with a
WNW–ESE extension that follows the trend of the inner propylitic
alteration zone towards Sekongkang (Fig. 2). The steeper thermal
gradients to the north, south and southwest of Batu Hijau are readily
apparent and can explain the variable trends in trace element
concentrations and element ratios in chlorite noted earlier.

5.3. Comparison with whole rock data

In order to provide significant added-value for exploration,
mineral chemistry vectors need to define a broader footprint
and/or give directional information at greater distances and/or
with greater precision than can be obtained from conventional
whole rock geochemistry. This was tested by generating probability
plots for a range of conventional pathfinder elements in porphyry
systems (Cu, Mo, Au and Zn), in the same samples from which
the chlorite compositional data were obtained, in order to identify
mineralization-related data populations. The whole rock data were
then plotted in plan view (Fig. 9) and as a function of radial distance
from the deposit center (Fig. 10) and the anomalous populations
identified. These plots show that anomalous concentrations of Cu
(N328 ppm), Mo (N0.97 ppm) and Au (N7.4 ppb) can be identified
in samples up to 1 km from the Batu Hijau center. Concentrations of
Zn (N111 ppm) are more variable but there are anomalous concentra-
tions at ~1.0–1.5 km, with rare elevated values extending as far as
2.3 km (Figs. 9, 10). However, these distal samples are only 500 m
along strike from the Bambu epithermal veins (Fig. 10) so may have
been influenced by this later system.

Although above-background concentrations of pathfinder ele-
ments in whole rock (mostly within 1.0 km) define a footprint con-
sistent with the presence of mineralization in the vicinity, and do
broadly increase towards the center, their vectoring potential is lim-
ited by significant scatter and lack of distal dispersion (e.g., Fig. 10).
Chlorite is effective as a tool at distances beyond about ~800 m
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(Figs. 5, 6), starting from the outer edge of the whole rock anomalies.
It is limited in its proximal applicability because of its disappearance
from the higher temperature alteration assemblages where biotite
becomes dominant. The trends defined by element ratios in chlorite
can be used to indicate the presence of the Batu Hijau center at least
1 km beyond and in some cases more than 3.5 km beyond the dis-
tance outlined by conventional whole rock geochemistry. More im-
portantly, chlorite also displays very systematic spatial trends that,
conservatively, can be recognized in samples 500 m apart along a
traverse orthogonal to the compositional gradient (i.e., towards the
system center). Although protolith composition needs to be consid-
ered, there is no evidence at Batu Hijau (range in silica content of ig-
neous host rocks from 41 to 69 wt.%), or any of the dozen or so major
case studies in the wider AMIRA P765a research project, for a signif-
icant protolith effect on the trace elements reported here.
Please cite this article as:Wilkinson, J.J., et al., The chlorite proximitor: A ne
http://dx.doi.org/10.1016/j.gexplo.2015.01.005
Consequently, we conclude that chlorite is a reliable tool for vector-
ing towards the hydrothermal center from outside of the whole rock
geochemical anomaly associated with porphyry centers.
5.4. The chlorite proximitor

The spatial variations in trace element ratios in chlorite can be
converted into simple exponential formulae that can be used to predict
distance-to-center in porphyry systems such as Batu Hijau. These
equations have the form:

x ¼
ln R

.
a

n o

b
ð1Þ
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where x is the distance in meters, R is the element ratio, and a and b are
exponential fit parameters.

A selection of distance prediction equations based on several ele-
ment ratios, together with their approximate range of validity and cor-
relation coefficients, are given in Table 2. From the relationships
discussed above, we conclude that the slope of the exponential relation-
ship will vary according to the form of the thermal anomaly associated
with an intrusive system and therefore absolute distance estimatesmay
not be accurate if applied to systems with markedly different thermal
gradients to Batu Hijau (or along the western traverse at Batu Hijau).
Nonetheless, trends in estimated distances could still be used to vector
Table 2
Element ratios in chlorite and exponential fit parameters as a function of distance from the
Batu Hijau center.

Ratio Orders of
magnitude
variation

Maximum
resolvable
distance (km)

Regression
distance
range (m)

R2 Exponent
constant
(b)

Scalar
constant
(a)

Ti/Ni 2.5 2.5 853–2192 0.82 −0.0039 4.7 × 102

Ti/Sr 3.5 2.5 764–1767 0.77 −0.0088 3.0 × 106

Ti/Li 3 2.5 764–2192 0.72 −0.0041 7.6 × 102

Ti/Pb 3 2.5 764–1767 0.71 −0.0074 6.0 × 106

V/Ni 2 5 853–4875 0.69 −0.0009 2.0 × 101

Ti/Ba 3 4 764–1767 0.67 −0.0076 1.0 × 106

Ti/K 2.5 3 764–1767 0.67 −0.0062 6.4 × 103

Ti/Co 3 2.5 764–2192 0.67 −0.0044 5.0 × 102

Mg/Ca 2 5 764–4875 0.66 −0.0009 7.2 × 102

Mg/Sr 2 2 764–1767 0.65 −0.0051 3.0 × 107

Mg/Sr 2.5 5 764–4875 0.60 −0.0011 2.1 × 105

Please cite this article as:Wilkinson, J.J., et al., The chlorite proximitor: A ne
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towards the center of a system, in the same way as the raw element ra-
tios from which the distance estimates were derived.

Applying the Batu Hijau calibrated Ti/Sr proximitor equation to
sample-average Ti/Sr data from Batu Hijau itself shows that for 26 out
of 28 samples within a 2 km radius of the deposit center, the distance
to center is predicted to within ±170 m. Outside 2 km, where the
R2 = 0.719
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and from one skarn sample fall off the trend defined by the majority of chlorites from
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gradient of the ratio vs. distance relationship starts to decrease, dis-
tances to center are underestimated.
5.5. Comparison with metamorphic chlorite

Many terrane hosting porphyry ore deposits include metamorphic
host rocks or igneous rocks that have been subjected to relatively low
temperature geothermal alteration that is unrelated to porphyry hydro-
thermal activity. Consequently, the ability to distinguish between
porphyry-related propylitic chlorite and that formed in such unrelated
systems is desirable.

Batu Hijau chlorite compositions, classified in distance bins relative
to the porphyry center, have been comparedwithmetamorphic chlorite
from two Proterozoic metamorphic terranes in Australia: the George-
town Inlier in north Queensland and the Entia Dome in the Northern
Territory. The Georgetown samples are greenschist facies metabasalts
from the Dead Horse Metabasalt unit (Baker et al., 2010). The Entia
Dome samples comprise orthogneisses and calc-silicate gneisses from
the Entia Gneiss Complex (Wade et al., 2008). Thus, the sample suite
covers a range in bulk compositions that span the range studied at
Batu Hijau.

The comparison shows that a number of elements distinguish the
metamorphic chlorite from the propylitic chlorite, irrespective of the
wide range in bulk composition of the metamorphic rocks (Fig. 11). In
particular, Fe and Li concentrations are higher in metamorphic chlorite
than in most of the Batu Hijau chlorites analyzed. Distal propylitic chlo-
rite is typically depleted in Al, Fe and Li and enriched in Ca, Sr and Si rel-
ative to metamorphic chlorite compositions; this distinction is
particularly important given that the most critical area in which dis-
crimination would be necessary is in the distal parts of porphyry-
related propylitic domains where other indicators of a porphyry system
are likely to be lacking. Although less diagnostic, Ti (higher inmetamor-
phic chlorite), and Mg, Zn, Sb, As, Ag, and U (lower in metamorphic
chlorite) can also be potentially used as discriminators.
Please cite this article as:Wilkinson, J.J., et al., The chlorite proximitor: A ne
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6. Discussion and conclusions

Major ore deposits are increasingly less likely to be discovered at the
Earth's surface and exploration is therefore more likely to require prob-
ing beneath a kilometer ormore of barren orweakly altered cover rocks.
Drilling to such depths is extremely costly, so the development of a bet-
ter understanding of hydrothermal alteration patterns and tools to
identify proximity to amineralized center based on analysis of a limited
number of drill core or surface samples are of significant interest.

Here, we show that clear patterns in the trace element chemistry of
chlorite are developed in the propylitically altered halo of a large por-
phyry ore deposit. The observed systematic trace element patterns are
most likely due to one or both of the followingmechanisms: (1) disper-
sion outward by migrating hydrothermal fluids, as is clearly document-
ed by the large precious and base metal anomalies that surround such
deposits (e.g., Sillitoe, 2010); (2) a thermal control of element substitu-
tion in chlorite. In the case of Ti, a high field strength element notable for
its limited mobility in igneous or hydrothermal systems, the former
mechanism is considered unlikely. However, metals such as Zn and
Mn are typically enriched in halos surrounding porphyry deposits and
are significantly enriched in chlorite above whole rock concentrations.
Therefore, advective transport to the site of Zn–Mn-rich chlorite crystal-
lization would appear to be likely.

In particular, Ti shows a very strong relationship with distance
from the hydrothermal center whichwe argue is primarily a function
of crystallization temperature. The approximately exponential de-
crease in Ti content with distance is consistent with thermal
gradients expected around cooling intrusions (e.g., Delaney, 1986;
see Fig. 12). We suggest that this exponential relationship breaks
down at a certain distance from the center where a transition to
“background chlorite” – that did not crystallize in the presence of
propylitic hydrothermal fluids – occurs. This distal chlorite appears
to show no systematic compositional variation relative to the
porphyry center and also displays more scatter in compositional
parameters (e.g., Fig. 5).
w tool for detecting porphyry ore deposits, J. Geochem. Explor. (2015),
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We are not aware of previous studies documenting the thermal de-
pendence of Ti in chlorite although this control is known for biotite
(Henry & Guidotti, 2002; Henry et al., 2005; Patiño Douce, 1993;
Patiño Douce et al., 1993). Similar to biotite, we propose that the substi-
tution of Ti into the octahedral site in chlorite is thermally-controlled,
requiring coupled substitutions involving multiple cations and possibly
anions. Substitution could also account formany of the other systematic
trace element patterns that we have recognized that either correlate
positively (e.g.,Mg, Al, V) or negatively (Li, B, Ca, Sr, Ba)with Ti and tem-
perature. Biotite typically contains much higher concentrations of Ti
than we have determined in chlorite and so the precipitation of Ti-
bearing oxides (most commonly titanite, but also rutile at Batu Hijau)
is an expected outcome of the biotite → chlorite replacement reaction,
themost common chlorite-forming reaction we have observed. The lib-
eration of Ti in this reaction has also been reported from retrograde
metamorphic rocks (Eggleton & Banfield, 1985). The limited take-up
of Ti by chloritemay be due to the high levels of octahedral Al that typify
the chlorite structure (Ryan & Reynolds, 1997). The buffering of the Ti
content of chlorite by the excess Ti produced from the biotite break-
down reaction may explain why chlorite incorporates Ti in such a sys-
tematic way, possibly in part related to an inverse temperature
dependence of Al in the octahedral site.

In addition to temperature, other factors that could control substitu-
tion of Ti (and other elements) are the Al, Fe and Mg content of
Fig. 9. Probability plots and corresponding maps illustrating spatial variations in whole rock composition for four pathfinder elements (Cu, Mo, Au, Zn). Probability plots iden
anomalous populations in the datasets (red dots) that are distinguishable from natural background variation (green dots). Symbol sizes are scaled to the concentration value and d
from Bambu and Sekongkang are highlighted in pink and blue respectively. Batu Hijau center shown by outline of intense biotite alteration. (For interpretation of the reference
color in this figure legend, the reader is referred to the web version of this article.).
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mafic phases which in turn reflect the chemistry of the protolith rocks,
the oxidation state and the pH of the fluids concerned (e.g., Shikazono
& Kawahata, 1987). Batu Hijau provides a relatively uniform protolith
environment in which such factors are limited. The somewhat anoma-
lous chlorite compositions recorded in the tonalite samples could be
due to protolith chemistry or may reflect a different origin of chlorite
from that developed in the propylitic halo. Such controls of the concen-
tration of Ti (and other trace elements) in chlorite require further inves-
tigation in more compositionally heterogeneous systems. By analogy
with Ti substitution in biotite (Patiño Douce, 1993), oxidation state
may influence Ti in chlorite; however, it will be difficult to evaluate
the relative roles of temperature and redox in natural samples from
the propylitic environment because of the strong coupling between
these two parameters.

Some elements, such as Zn and Mn, are easily accommodated in the
chlorite structure (Deer et al., 1966) and may attain significant concen-
trations. At BatuHijau, these show a chlorite concentrationmaximumat
a distance of about 1.3 km from the center of the systemwhich mirrors
thewhole rock anomalies defined by thesemetals (Fig. 9). This is a char-
acteristic dispersion pattern around porphyry deposits (Sillitoe, 2010).
Consequently, these elements are thought likely to be advected by
magmatic-hydrothermalfluids to at least this distance from the porphy-
ry deposit itself. It has been previously suggested that hypersalinemag-
matic brines, known to be enriched in Mn, Zn and Pb (Audétat et al.,
tify
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2008; Landtwing et al., 2005; Ulrich et al., 1999;Wilkinson et al., 2008),
may have precipitated thesemetals during cooling in contactwith rocks
undergoing propylitic alteration and dilution with meteoric water
(Hemley & Hunt, 1992). Additional elements that show comparable
behavior to this are Fe, Co, Eu and, to a lesser extent, Li.

The thermal dependence of Ti substitution in chlorite provides a
powerful tool for mineral exploration in the propylitic environment.
The recognition that certain monovalent and bivalent trace elements
(Li, K, Ca, Ni, Co, Sr, Ba, Pb) tend to increase in chlorite with distance
from porphyry centers allows the generation of Ti/x ratios that vary
up to four orders of magnitude. If multiple samples are available,
these ratios can provide a sensitive indicator of direction towards a
heat source and can also be calibrated to enable estimation of
distance from an unknown hydrothermal center, even when it is
located at depth. Although chlorite geothermometry alone has
been shown to identify the thermal anomaly associated with the
Batu Hijau deposit, calculated temperatures vary by less than an
order of magnitude and display significant scatter so this is a
relatively imprecise vectoring tool. In the case of Batu Hijau, chlorite
proximitor ratios and geothermometry could reduce the exploration
area to around 3 km2 from an initial target area of at least 40 km2

(e.g., Fig. 8).
We have shown that gradients in chlorite compositions canmap out

the thermal structure of the broader magmatic system to which an
individual mineralized porphyry intrusion relates. This opens up the
possibility that the tool can be combined with conventional gravity or
w tool for detecting porphyry ore deposits, J. Geochem. Explor. (2015),
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magnetic data in order to prioritize geophysical targets that are also
thermal anomalies. Significantly, this should work even when an intru-
sion is blind to surface as long as its propylitic envelope is preserved and
can be sampled.

Although this method can potentially provide a powerful way to
identify the centers of hydrothermal systems from within propylitic
altered domains, the results presented have not yet been fully interro-
gated in terms of the potential fertility (i.e., extent of mineralization)
of a system. Comparison between a number of porphyry deposits
studied in the AMIRA P765A project suggests that the variability of Zn
and Mn concentration maxima in chlorite is related to metal
endowment, perhaps reflecting the total mass of these metals fluxed
through the system. Work is ongoing to establish whether these, and
other, criteria can be used as a consistent indicator of porphyry system
fertility.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gexplo.2015.01.005.
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