226 research outputs found

    On computing the eigenvalues of a symplectic pencil

    Get PDF
    AbstractThis paper presents an algorithm for computing the eigenvalues of a symplectic pencil that arises in one of the commonly used approaches for solving the discrete-time algebraic Riccati equation. The algorithm is numerically efficient and reliable in that it employs only orthogonal transformations and makes use of the structure of the symplectic pencil. It requires about one-fourth the number of floating-point operations that the QZ algorithm uses to compute the eigenvalues of the pencil directly. The proposed method can be regarded as being analogous for the case of symplectic pencils to the method developed by Van Loan for computing the eigenvalues of Hamiltonian matrices

    Algorithms for adaptive stochastic control for a class of linear systems

    Get PDF
    AbstractThis paper is concerned with the control of linear, discrete-time, stochastic systems with unknown control gain parameters. Two suboptimal adaptive control schemes are derived: One is based on underestimating future control and the other is based on overestimating future control. Both schemes require little on-line computation and incorporate in their control laws some information on estimation errors. The performance of these laws is studied by Monte Carlo simulations on a computer. Two single-input, third-order systems are considered, one stable and the other unstable, and the performance of the two adaptive control schemes is compared with that of the scheme based on enforced certainty equivalence and the scheme where the control gain parameters are known

    Characterization of Errors in Retinopathy of Prematurity Diagnosis by Ophthalmologists-in-Training in the United States and Canada

    Get PDF
    PURPOSE: To identify the prominent factors that lead to misdiagnosis of retinopathy of prematurity (ROP) by ophthalmologists-in-training in the United States and Canada. METHODS: This prospective cohort study included 32 ophthalmologists-in-training at six ophthalmology training programs in the United States and Canada. Twenty web-based cases of ROP using wide-field retinal images were presented, and ophthalmologists-in-training were asked to diagnose plus disease, zone, stage, and category for each eye. Responses were compared to a consensus reference standard diagnosis for accuracy, which was established by combining the clinical diagnosis and the image-based diagnosis by multiple experts. The types of diagnostic errors that occurred were analyzed with descriptive and chi-squared analysis. Main outcome measures were frequency of types (category, zone, stage, plus disease) of diagnostic errors; association of errors in zone, stage, and plus disease diagnosis with incorrectly identified category; and performance of ophthalmologists-in-training across postgraduate years. RESULTS: Category of ROP was misdiagnosed at a rate of 48%. Errors in classification of plus disease were most commonly associated with misdiagnosis of treatment-requiring (plus error rate = 16% when treatment-requiring was correctly diagnosed vs 81% when underdiagnosed as type 2 or pre-plus; mean difference: 64.3; 95% CI: 51.9 to 76.7; CONCLUSIONS: Ophthalmologists-in-training in the United States and Canada misdiagnosed ROP nearly half of the time, with incorrect identification of plus disease as a leading cause. Integration of structured learning for ROP in residency education may improve diagnostic competency

    Assessing the Combined Public Health Impact of Pharmaceutical Interventions on Pandemic Transmission and Mortality: An Example in SARS CoV-2

    Get PDF
    To assess the combined role of anti-viral monoclonal antibodies (mAbs) and vaccines in reducing severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) transmission and mortality in the United States, an agent-based model was developed that accounted for social contacts, movement/travel, disease progression, and viral shedding. The model was calibrated to coronavirus disease 2019 (COVID-19) mortality between October 2020 and April 2021 (aggressive pandemic phase), and projected an extended outlook to estimate mortality during a less aggressive phase (April–August 2021). Simulated scenarios evaluated mAbs for averting infections and deaths in addition to vaccines and aggregated non-pharmaceutical interventions. Scenarios included mAbs as a treatment of COVID-19 and for passive immunity for postexposure prophylaxis (PEP) during a period when variants were susceptible to the mAbs. Rapid diagnostic testing paired with mAbs was evaluated as an early treatment-as-prevention strategy. Sensitivity analyses included increasing mAb supply and vaccine rollout. Allocation of mAbs for use only as PEP averted up to 14% more infections than vaccine alone, and targeting individuals ≥ 65 years averted up to 37% more deaths. Rapid testing for earlier diagnosis and mAb use amplified these benefits. Doubling the mAb supply further reduced infections and mortality. mAbs provided benefits even as proportion of the immunized population increased. Model projections estimated that ~ 42% of expected deaths between April and August 2021 could be averted. Assuming sensitivity to mAbs, their use as early treatment and PEP in addition to vaccines would substantially reduce SARS-CoV-2 transmission and mortality even as vaccination increases and mortality decreases. These results provide a template for informing public health policy for future pandemic preparedness

    Dust Devil Sediment Transport: From Lab to Field to Global Impact

    Get PDF
    The impact of dust aerosols on the climate and environment of Earth and Mars is complex and forms a major area of research. A difficulty arises in estimating the contribution of small-scale dust devils to the total dust aerosol. This difficulty is due to uncertainties in the amount of dust lifted by individual dust devils, the frequency of dust devil occurrence, and the lack of statistical generality of individual experiments and observations. In this paper, we review results of observational, laboratory, and modeling studies and provide an overview of dust devil dust transport on various spatio-temporal scales as obtained with the different research approaches. Methods used for the investigation of dust devils on Earth and Mars vary. For example, while the use of imagery for the investigation of dust devil occurrence frequency is common practice for Mars, this is less so the case for Earth. Modeling approaches for Earth and Mars are similar in that they are based on the same underlying theory, but they are applied in different ways. Insights into the benefits and limitations of each approach suggest potential future research focuses, which can further reduce the uncertainty associated with dust devil dust entrainment. The potential impacts of dust devils on the climates of Earth and Mars are discussed on the basis of the presented research results

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for the associated production of the Higgs boson with a top-quark pair

    Get PDF
    A search for the standard model Higgs boson produced in association with a top-quark pair t t ¯ H (tt¯H) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb −1 and 19.7 fb −1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H → hadrons, H → photons, and H → leptons. The results are characterized by an observed t t ¯ H tt¯H signal strength relative to the standard model cross section, μ = σ/σ SM ,under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is μ = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV
    corecore