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This paper is concerned with the control of linear, discrete-time, stochastic 
systems with unknown control gain parameters. Two suboptimal adaptive 
control schemes are derived: One is based on underestimating future control 
and the other is based on overestimating future control. Roth schemes require 
little on-line computation and incorporate in their control laws some information 
on estimation errors. The performance of these laws is studied by Monte Carlo 
simulations on a computer. Two single-input, third-order systems are considered, 
one stable and the other unstable, and the performance of the two adaptive 
control schemes is compared with that of the scheme based on enforced certainty 
equivalence and the scheme where the control gain parameters are known. 

1. INTRODUCTION 

Problems of controlling systems under uncertainty have long attracted the 
attention of many control theorists and engineers because of their importance in 
practical control systems. Since the work of Bellman [ 11, the stochastic adaptive 
control approach has been useful in treating such problems ([2]; also see [3] for a 
survey). For state space models, the optimization approach for stochastic 
adaptive control has been studied extensively. However, explicit solutions 
have been obtained for only a limited class of problems, for example, the well 
known certainty equivalence solution of the standard linear quadratic Gaussian 
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problem. Although more general problems have been conceptually solved (i.e., 
requiring formal solutions of functional equations), explicit forms of the optimal 
control laws (if they exist) have yet to be obtained. In order to overcome the 
difficulties in solving the functional equations, many suboptimal schemes have 
been proposed [3]. Most of them incorporate approximations for some features 
of adaptive control. However, except for the ad hoc scheme where the certainty 
equivalence principle is enforced (this scheme will be called the CE law), they 
usually require a considerable amount of on-line computation, which can often 
be prohibitive. For example, the control law based on the dual control approach 
in [4], which exhibits an active learning property, requires extensive on-line 
compuation to evaluate future observation programs. The open loop optimal 
feedback control law (OLOF) ignores future measurements but incorporates 
some information concerning the uncertainty (covariances of estimation errors) 
in its control algorithm [5-71. In this sense, this scheme was called “cautious” 
in [3]. The OLOF law still requires numerical optimization techniques on-line. 

The purpose of this study is to investigate two suboptimal schemes which 
require little on-line computation but incorporate the effects of estimation errors 
in their control laws, and to study the p.erformance of these laws by Monte Carlo 
simulations on a computer. We consider discrete-time linear stochastic systems 
with unknown control gain parameters (essentially the same class of problems 
as that treated in [6]). Admittedly, this class of systems is small in practice. 
However, we believe that because of their conceptual simplicity and computa- 
tional efficiency, the two laws derived in this paper may provide a suitable 
framework for treating the more general problem, i.e., when the system state 
and control gain matrices are both unknown. 

One of the control laws is based on underestimating future control, hence 
called the UEFC law, and the other is based on overestimating future control, 
the OEFC law. Two single-input, third-order systems (one stable and the other 
unstable) are simulated, and the performance of the UEFC and OEFC laws is 
compared with that of the CE law and the law where the control gain parameters 
are known. The sensitivity of the performance of the four laws is studied for 
various levels of initial uncertainties in the states and the control gain parameters. 

This paper is organized as follows: Section 2 defines the notation. A precise 
definition of the problem is given in Section 3. Section 4 presents the results of 
the application of Kalman filter theory for the optimal estimation problem. We 
derive the UEFC and OEFC laws in Section 5, and Section 6 shows the results 
of the Monte Carlo simulations. Section 7 concludes with remarks on this 
study. 

2. NOTATION 

The transpose of a matrix X (vector x) is denoted by XT(xT). The trace of a 
square matrix X is denoted by tr(X). The matrices I, and O,., denote the 
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n-dimensional identity matrix and the m x n null matrix, respectively; the 
subscripts will be dropped when there is no ambiguity. The notation X > 0 
(X > 0) denotes a positive definite (semidefinite) matrix X, and X > Y (X 3 Y) 
implies X - Y > 0 (X - Y 2 0). The Kronecker product of matrices X and Y 
is denoted by X @ Y. The mn-dimensional row and column string vectors of an 
m x n matrix X are denoted by rs(X) and es(X); i.e., 

[rs(X)IT = (x&& ..* A&), 

[CS(X)]T - (x~,&, ... i&J, 

where &(x~J is the ith row (column) vector of X. 
The (conditional) expectation of a random vector x (given Y) is denoted by 

E[x] (E[x 1 YJ). The notation x N A/(X, X) means that a random vector x has 
Gaussian distribution with mean 5 and covariance X. Statements with “a.s.” 
imply that they hold with probability 1. 

Symbols with subscript or superscript “U” (“0”) pertain to algorithms for 
UEFC (OEFC). 

3. PROBLEM STATEMENT 

We consider a standard finite-stage discrete-time linear stochastic control 
problem with a quadratic performance index. The system dynamics and 
measurement relations are described by 

x(k + 1) = Ax(k) + Bu(k) + a(k), (1) 
Y(k + 1) = Cx(k + 1) + ?(k + I), k = 0, l,..., N - 1) (2) 

where the state x(k), the control u(k), the measurement y(k), and the plant noise 
f(k) are vectors of dimensions n, m, 1, and r, respectively. The matrices A, C, and 
D are of appropriate dimensions and are assumed to be known. The n x m 
control matrix B is a random matrix’ with 

b - N(k Pb), b = rs(B). 

The other primary random variables are 

40) - w% , PO), 

t(k) - NO, QW 
77(k) - NO7 Wh R(k) > 0; 

1 For simplicity of derivation, we assume that B is a constant matrix. The extension 
of our results to the case with linearly varying B as in [6] is straightforward. 
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e(k) and r](k) are mutually independent white noise sequences, and both are 
independent of b and x(0); b and x(0) are also mutually independent. 

The performance measure we wish to minimize is given by 

J G E [g J(k)] s E /z [x(k + l)T s(k + 1) X@ + 1) + U(k)T(l(K) ‘(‘)I 1 ’ 

(3) 
where S(k + 1) 3 0 and /I(k) > 0. Admissible control laws are causal; i.e., 

u(k) = u(k, Y(k), U(k - 1)) 

where Y(k) 3 [y(l),...,y(k)] and U(k - 1) = [u(O),..., u(k - l)]; u(0) must be 
a function of prior information on the system. 

4. ESTIMATION 

Since the system equations (1) and (2) are linear in the random vector x(k) 
and random matrix B, Kalman filter theory can be applied to modified system 
equations to obtain the optimal minimum variance estimates. 

Applying Lemma Al in Appendix I, we get 

Bu(k) = I,Bu(k) = [In @ u(k)T] b. (4) 

We can write the following system equations for the augmented state vector 
z(k)T = [x(k)T ZFJ: 

where2 

z(k + 1) = F(k) z(k) + W(k), (5) 

y(k + 1) = Hz@ + 1) + rl(k + I>, (6) 

H = [C %nml. (8) 

2 If we arrange the vectors of B columnwise we obtain augmented system equations 
of the same form as (5)-(8), except that F(k) is given by 

F(k) = 
[ 

A 4WT 0 I, 

0 n7m.n nm 1 I * 

The augmented state vector for this case is z(k)T = [x(k)Tbe7, where b, = es(B). The 
row string arrangement in (5)-(8) . p f IS re erred in order to facilitate backward optimization 
(see Section 5). 
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Application of Kalman filter theory to the linear equations (5) and (6) yields 
the following optimal minimum variance estimate: 

1(K+1IK+1)=F(k)~(RjK)+K(Ki-l)[y(~+l)--~(~)~(~/~)], (9) 

K(k + I) = P(k + 1 / k) HT[HP(k + 1 j k) HT + R(k)]-‘, (10) 

P(k + 1 j k) = F(k) P(k j k) FT(k) + GQ(k) GT, (11) 

f’(k + 1 I k + I) = [Aa - K(k + 1) HI P(k + 1 I k), u-4 

a(0 IO) = E] ) P(0 IO) E [,2*, Oy] ) 

where $(K / K) = E[a(K) / Y(R)], f(k + 1 1 K) = E[z(K + 1) 1 Y(K)] = F(K) $12 ] K), 
and 

P(k I k) = E[{z(k) - qk I k)) (z(k) - S(k I k)lT I Y(k)], (13) 

P(K+1~K)=E[(z(k+1)-~(K+1IR)){z(K+1)--(~+1lK)}’IY(~)]. 

(14) 
We partition a(~’ 1 K) and P(z’ / R) as 

i(i / k) 
z(i 14 = [+ , k) 9 I 

4’ I 4 
‘(’ I k, = [T& 1 k) 

d’ I WT 
T& 1 k) 1 ’ (15) 

where $(i / k) is an n-dimensional vector, and ~r(i / k) and ~-s(i j k) are n x n 
and nm x nm matrices, respectively. 

5. FEEDBACK CONTROL LAWS 

It is well known that the control laws which solve the optimization problem 
are the formal solutions of the functional equation [2]. 

J: = 25 Jrc > k = N - I,..., 0, (16) 

where 

Jk = RI(k) + Jk*+l I WI, J; SC 0. 

However, closed form solutions of the backward optimization are not available, 
and various suboptimal schemes have been proposed (see, for example, [3] for a 
survey of such schemes). Some of the schemes [4, 6j require a considerable 
amount of on-line computation at each stage k. We derive here two feedback 
laws which do not require lengthy on-line computations. The two laws are 
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obtained by carrying out the backward optimization (16) approximately. rn the 
following derivations of the control laws, the time indices will be dropped for 
brevity when there is no ambiguity in notation. 

5.1. Control Law Based on Underestimating Future Control Efforts (UEFC) 

This control law is derived by underestimating the effects of future control. 
The backward “suboptimization” proceeds as follows: 

Last stage: k = N - 1. Since JN zz 0, it is easy to obtain the quadratic 
cost-to-go functional, 

JNwl = E[x(N)= S(N)x(N) + u(N - l)=A(N - 1) u(N - 1) 1 Y(N - I)] 

=u(N- l)=A(N- l)u(N- 1) 

+ tr(S(N)E[Bu(N - 1) u(N - l)= BT 1 Y(N - l)]} 

+ 2tr(A*S(N) E[Bu(N - 1) x(N - l)= ] Y(N - l)]) 

+ 4N - 1) + B(N - I), 

where 

LY(N - 1) E tr{A=S(N)AE[x(N - 1) x(N - l)T 1 Y(N 

,!3(N - 1) z tr[DTS(N) DQ(N - l)], 

are independent of u(N - 1). 
Recalling (4), we can rewrite the second and third terms as 

tr{SE[BuuTBT 1 Y]} 

= tr{S(I, @ J) E[bbT 1 Y] (I, @ u)} 

- 

(17) 

1)lh (18) 

(1% 

= tr(S(N) 11% @ ZJ(N - I)=] M,(N - 1 / N - 1) [I, @ u(N - I)]), (20) 

tr{A=SE[Bux= 1 Y]} 

= tr{ATSII, @ UT] E[bxT / Y]} 

= tr{ATS(N) [In @ u(N - l)*] M&N - 1 1 N - I)}, 

where the M*‘s are defined by 

M,(i I 4 W(i I k)= _ 
M(i ’ ‘) = [itI& 1 k) M,(i ) k) = E bx(i)= 1 [ x(i) X(i)= x(i) b= 

bb’ II ‘(‘) 

(21) 

= 
1 
rl(i ( k) + S(i 1 k) cQ(i 1 k)= 
~,(i 1 k) + 6(i I k) a(i I k)= 

r3(i 1 k)= + 9(i I k) &’ ( k)’ 
‘IT&’ 1 k) + 6(i I k) 6(i 1 k)= I * (22) 

409/72/r-9 
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Applying Lemma A2 to (20) and (21) we have 

= [cs(& @ u)]T (S @ M2) cs(ln @ 24) 
=u(N- 1)‘[rT(S(N)@M2(N- 1 IN-- l))r]u(N- I), (23) 

tr{A’S(I, @ UT) Ma) = tr{(l, @ u~)&ZJ~S,? 

= [cs(l, @I u)]’ cs(M,ATS) 

= {rT cs[M,(N - 1 j N - 1) ATS(A’)]jT u(N - l), (24) 

where the following identity was used to obtain the final expressions: 

cs(In @ 24) = ru, 

FE [I 0 I 0 I 112 m,nm vn m,nm m >**‘Y O,,,,I,]. 

Note that r is an n2m x m matrix. 
Thus, (17), (23), and (24) yield 

JN-l=U(N- l)T[/l(N- l)+B(N-l)]u(N- 1) 

+ 2W(N - 1)’ u(N - 1) + a(N - 1) + /?(N - 1), 

where 

(26) 

B(N- l)EP[S(N)@M2(N- 1 IN- l)]T, (27) 

w(N - 1) ZE Pcs[Ms(N - 1 / Iv - 1) A’S(N)]. (28) 

Therefore, the optimal control law tl*(N - 1) and the associated cost-to-go 
are given by 

u*(N - 1) = -[fl(N - 1) + B(N - 1)1-l w(N - l), (29) 

J&, = -w(N - I)’ [A(N - 1) + e(N - l)]-‘+v - 1) + a(N - 1) 

+ w- 1). (30) 

Note that B(N - 1) > 0 a.s., since S(N) > 0 and M2(N - 1 1 N - 1) > 0 as. 
(see Lemma A3 in Appendix I). Hence /1(N - I) + B(N - 1) > 0 and inver- 
tible a.s., since fl(N - 1) > 0. 

Stage k = N - 2. The functional relation (16) yields 

JN-2 = WP- 2) + G-1 I yw- 211 
= E[-w(N - l)‘{/l(N - 1) + B(N - 1)}-1 w(N - 1) 1 Y(N - 2)] 

+E[J(N-2)+ol(N-l)I Y(N--)]+B(N- I). (31) 
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Since Y(N - 1) = {Y(N - 2),y(N - I)}, from (18) 

E[a!(N - 1) 1 Y(N - 2)] 

= E[E{x(N - 1)T ATS(N) Ax(N - 1) / Y(N - l)} 1 Y(N - 2)] 

= E[x(N - 1)’ #S(N) Ax(N - 1) 1 Y(N - 2)]. 

Therefore, it is straightforward to obtain 

I,“-, = E[](N- 2)f cr(N- I)/ WV- 31+ BW- 1) 

= u(N - 2)T [A(N - 2) + B”(N - 2)l u(N - 2) (32) 

+ 2wu(N - 2)T u(N - 2) + %J(N - 2) + B”W - 2) 

where 

B”(N - 2) z P[V”(N - 2) @ M&v - 2 I N - 2)] r, (33) 

W”(N - 2) E P cs[M,(N - 2 1 N - 2) AV”(N - 2)], (34) 

f&N - 2) = tr{ATVU(N - 2) AE[x(N - 2) x(N - 2)T 1 Y(N - 2)]}, (35) 

&(N - 2) s j3(N - 1) + tr[DTS(N - 1) DQ(N - 2)], (36) 

v&v - 2) = S(N - 1) + /ITS(N) A. (37) 

The difficulty in optimization lies in evaluating the first term in (31), since 
B(N - 1) and w(N - 1) are the complicated random matrix and vector, res- 
pectively, depending on u(N - 2). In this control law the term is neglected in 
order to simplify the backward optimization. Note that the term is nonpositive 
a.s., since cl(N - 1) + B(N - 1) > 0 a.s. This term originates from the first 
two terms in (26) (with the optimal law u*(N - 1) in (29)) and accounts for 
the amount of reduced cost due to the control at stage N - 1. Hence the omis- 
sion of this term means that the control law at N - 2 is designed by neglecting 
the control effect at N - 1 (the term E[or(N - 1) 1 Y(N - 2)] which is not 
neglected accounts for the cost due to the free motion from N - 1 to N). 
Although this approximation may seem somewhat ad hoc, the resulting control 
law requires little on-line computation and shows good performance in the 
simulated examples, as will be observed in Section 6. 

With the above simplification, we have control law uu(N - 2) which mini- 
mizes (32) and the associated cost-to-go functional J&a: 

u&v - 2) = -[A(N - 2) + 8”(N - 2)]-1 W”(N - 2), (38) 

T.&l < JZ-2 = -w&v - 2)T [A(N - 2) + @“(iv - 2)1-r W”(N - 2) 
(39) 

+ OL”(N - 2) + /%J(N - 2). 
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By proceeding with the simplification described for stage N 
the control law for a general stage R: 

u,(k) = -[Jk) + e”@)l-’ =J”(Q 

where 

B”(k) :r P[Vu(k) @ M,(k 1 k)] r 3 0, 

w,(k) = rT cs[M,(k / k) ATVu(k)], 

a.s., 

2, we obtain 

(40) 

(41) 

(42) 

vu(k) = S(k + 1) + ATVu(k + I) A, 
V”(N) = 0, 

k = N - l,..., 0, (43) 

and r and M,(k / k) are defined by (25) and (22) respectively. 

Remurks. 1. Since V,(k) can be computed off-line by (43), this control law 
requires no on-line recursive computation, but computation of only B,(k) and 
w,(k) to obtain u,(k). 

2. Note that B,(k) and w,(k) are functions of rs(k j k) and rs(k 1 k), 
measures of estimation error, as well as 4(k ) k) and 6(k 1 k) (see Eq. (22)). In 
this sense UEFC is cautious like OLOF [3]. 

3. As mentioned above for stage N - 2, A(k) + B,(k) > 0 and invertible 
a.s., hence (40) provides a well-defined control law as. 

5.2. Control Law Based on Overestimating Future Control Effmts (OEFC) 

Stage k = N - 2. The UEFC law was obtained by neglecting the term 
due to the control efforts at stage N - 1 because of the difficulty in approxi- 
mating the term in a simple manner. Here we bound the term, the first (negative) 
term in (31), from below, thereby obtaining a control law (OEFC) by over- 
estimating the control efforts at stage N - 1. 

LEMMA. The $rst term in (31) can be bounded as 

-w(N - 1)T [/1(N - 1) + B(N - l)]-’ w(N - 1) 

3 -tr([rl(N - 1) + ep - 1)1-i e(N - 1)) a(N - 1) a.s. 

Proof. Using S(N) >, 0 and M(N- 1 IN- 1) >O in Lemma A4 in 
Appendix I, we have 

[ 
S(N)@M,(N- 1 IN- 1) S(N)@M,(N- 1 IN- 1)’ 1 >() 
S(N)@M,(N- I IN- 1) S(N)@M,(N- 1 IN- 1) ’ . (45) 
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We define 

then 

y/ _= trVTwv AMl(N 
1 cs(M,(N - 1 1 N 

- 1 ] N - 1)) [cs{M,(N - 1 ) N - 1) #S(N)}]’ 
- 1) A%(N)} S(N)@M,(N- 1 IN- 1) I ’ 

(46) 

a(N - 1) = tr[ATS(N) AM,(N - 1 1 N - l)] = tr(MJTSA) 

= tr(SAM,AT) = [cs(AT)IT (S @ MI) cs(AT), 

where Lemma A2 was used to obtain the last equality. Also from Lemma Al 

cs[M,(N - 1 1 N - 1) ATS(N)]. 

Therefore, 

y = 
[ 
{c4~T)lT (S 0 Ml> WT) its 0 MS) CSVTNT 

(S 0 MS) 4AT) SO% 1 
= [ ic@TNT o,*,z, I[ s 0 Ml s 0 MST 4AT) q&2,.2, 

0 I n%n,d dm I[ S 0 M, S @ M, O,,, 1 1 I,a, * 
Hence, on noting (45), we have 

Y>O 

and an application of Lemma A4 to (46) yields 

cs[M,(N - 1 I N - 1) ATS(N)] {cs[M,(N - 1 1 N - 1) kITS(N) 

< (Y(N - 1) [S(N) @ M,(N - 1 ) N - l)]. 
(47) 

Thus, from (28) 

w(N - l)T [/1(N - 1) + B(N - l)]-’ w(N - 1) 

= tr{(.4 + 0)-l P cs(M3ATS) [cs(M&I~S)]’ I’> 

< tr{(n + t?)-l rT~(S @ MJ r} 

= tr{[/l(N - 1) + 8(N - l)]” B(N - l)} (Y(N - l), 

where (47), /l + 0 > 0 a.s., and Lemma A5 were used to obtain the inequality. 
This completes the proof. 

Using the above lemma and (31) we have a lower bound for JN-s: 

IN-2 
> Jz-, - E[tr{[n(N - 1) + @(N - l)]-’ e(N - 1)) a(N - 1) I Y(N- 2117 

(48) 
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where $(A? - 1) and OL(N - I) are the random matrix and variable, respectively, 
given Y(iV - 2), and no simple expression is available for the second term. As 
can be observed in (27), B(N - 1) is a function of M,(N - 1 / N - I), the 
estimate of MT (a constant random matrix) at N - 1. In order to proceed with 
the analysis in a simple manner, B(N - 1) is replaced by its estimate, 

I@- 1 IN-2) 

z~E[e(N-l)/Y(N-2)]=P[S(N)@Ma(N-2~NN2)]r, 
(49) 

which is a function of Y(N - 2). Therefore, (48) is approximated by 

g-, = Ii-‘-, - tr([Ll(N - 1) + &lV - 1 1 N - 2)]-’ 

x d(fv - 1 ) N - 2) E[a(N - 1) 1 Y(N - 2)]}. 
(50) 

For (32)-(37) and (50), we have the following cost-to-go expression for OEFC: 

g2 = u(N - 2y [A(N - 2) + e&v - 2)] u(N - 2) 

+ 2w,(N - 2)T u(N - 2) + c&v - 2) + p&v - 2), 
(51) 

where 

8,(N - 2) = rT[V&v - 2) @ M&v - 2 1 N - 2)] r, 

w,(N - 2) i&z l--T cs[M,(N - 2 1 N - 2) A-w&v - 2)], 

ao(N - 2) == tr[ATvo(N - 2) AM,(N - 2 1 N - 2)], 

/3,(N - 2) = p”(N - 2), 

I/,(N- 2) = S(N- 1) + +v- 1 / N- 2)ATS(N)A, 

r(N - 1 j A’ - 2) 

(52) 

(53) 

(54) 

(55) 

~1-tr{[Ll(N-l)+~(N-l~N-2)]-18^(N-l]N-2)}. 

(56) 
Therefore, the control law OEFC which minimizes J& is given by 

zko(N - 2) = - [A(N - 2) + e&v - 2)1-l w,(N - 2), 

g-, = -wo(~ - 2)T [n(lv - 2) + eo(N - 2~1-1 wo(N - 2) 

+ ao(N - 2) + POW - 2). 

(57) 

(58) 

Mgorithm for OEFC 

Since expression (58) for Jg-, has the same quadratic form as (39) for Jze2 , 
it is easy to obtain the OEFC control law for a general stage k: 

u,(k) = -bw + ww ~~(4, (59) 
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qk) = m1/6@) 0 Jqk I k)] c 
w,,(k) = rT cs[M,(k 1 k) ATVo(k)]. 

w-u 
(61) 

The matrix V,,(k) is computed by the following (backward) recursive formula: 

V(ijk)=S(i+l)+++lIk)ATV(i+l]k)A, 

i = N - 1, N - 2,..., k 
(62) 

I/,(k) = V(k I k), V(N I k) = On,, > 

,(i + 1 / k) = 1 - tr{[Ji + 1) + g(i + 1 I k)]-l e^(i + 1 I k)), 

B(i + 1 1 k) = PT[V(i + 1 I k) 0 IMs(k I k)] r. 

(63) 

(64) 

(65) 

Remark. 1. The OEFC algorithm has the same structure as the UEFC law 
given by (40)-(43), h w ere c(i + 1 / k) = 1 (compare (43) with (62)). 

2. The OEFC law requires more on-line computation than the UEFC law, 
since d(i + 1 ) k) depends on M,(k / k) = E[bbT I Y(k)] and (62) must be 
recursively computed for each stage k. 

6. EXAMPLES 

A computer simulation study was performed to evaluate the performance of 
the UEFC and OEFC control laws. The two systems selected are single-input 
third-order systems, and are essentially the same as those in [6]; one is a stable 
system and the other is an unstable system. The performance of the laws for 
Monte Carlo runs is statistically compared with the certainty equivalence law 
(CE) and the optimal control law when B is known (called the LQG algorithm- 
the solution of the standard LQG problem). The sensitivity of performance 
of the four algorithms is studied for various levels of initial uncertainties (P, and 

PO>. 
The system matrices common to the two systems are 

C=[l 0 01, DT = [0.2 0.4 0.61, 

SOT = [I 1 11, Q(k) = 0.01, R(k) = 0.09, 

S(k + 1) = 1, , A(k) = 1. 

Unless specified otherwise, the processes simulated have 20 stages (N = 19) 
and the sample mean iWJ of the performance measure CzLi J(k) has been com- 
puted for 20 Monte Carlo runs. 
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In this section we summarize the simulation results and discuss the properties 
of the UEFC and OEFC Laws. The reader is referred to [8] for more data and 
details. 

6.1. Stable System 

The system matrices are given by 

I 
1 0.2 0.0 

A= 0 1.0 0.2 1 , B=b 

20,000 c 

10,000 - 

5000 - 

2000 - 

1000 - 
2 

z 

: 500 - 

!!i 

% 
2 

200 - 

IOO- 

50 - 

20 - 

L-l -1.4 0.41 

STABLE SYSTEM 

- Pb = (12 13 

- P, = 413 

- - Pb = 413 

- - P, = 02 13 

0.0 

i I 
0.0 ) 

-0.4 

P 
/’ 

/I 

&---&)A--- PERFORMANCE OF 
0 CE LAW 

0 OEFCLAW 

0 UEFCLAW 
a LOG LAW 

10’ I I _I I I I 

.l .3 1 2 5 10 

FIG. 1. Dependence of Monte Carlo performance on Pb and PO (sample mean MJ). 
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where A has eigenvalues 0.8 and 0.8 f 0.4j. The sample mean M, of the four 
algorithms (UEFC, OEFC, CE, and LQG) for the Monte Carlo runs is plotted 
in Fig. 1. The heavy lines in Fig. 1 correspond to il4, for Pb = ~“1s with 
P,, = 413 , and the dashed lines for P, = u21a with P, = 41, . The abscissa u 
indicates the level of prior uncertainty for each case. For each of the 20 runs, 
B = b and x(O) are randomly generated by the distributions b N N(6, P,J 
and x(0) N N(%,, , PO). In order to see the normalized performance of the 
suboptimal laws, the ratio 

rJ = 
MJ for a suboptimal law 

MJ for the LQG law 

is plotted in Fig. 2 for various u’s. 

PERFORMANCE OF 
0 CELAW 
0 OEFC LAW 
0 UEFCLI 

STABLESYSTEM 

-Pb=o*I3 
- P. = 413 

-- Pb’413 
- - PO = 02 IJ 

1 I I I I I I .l .3 1 2 5 10 

FIG. 2. Dependence of normalized sample mean rJ on Pa and 4. 

Observations. 1. In Fig. 1 the performance of UEFC and OEFC remains 
almost the same as a increases for Pb = uaIs with PO = 4& , whereas the CE 
performance becomes considerably worse (the heavy lines). This is to be 
expected, since both UEFC and OEFC take the error of estimates into conside- 
ration and are cautious in implementing control, while CE does not consider 
such uncertainty (see Remark 2 following Eq. (43)). 

2. The normalized performance of the three suboptimal laws is rather 
insensitive to variations in P,,; however, Y, decreases slightly as PO increases 
(the dashed lines in Fig. 2). This is because the uncertainty in z,, (P,J, which is 
common to the four laws (including the LQG law), becomes comparatively 
more dominant than the uncertainty in 6(Pb = 41s) as u increases, and as a 
result the performance degradation due to unknown B tends to decrease. 
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FIG. 3. Time history of control u(k) for the four control laws. 

3. Considering that the performance of the LQG law is impossible to 
attain and that the optimal law with unknown B is worse than the LQG law 
(the optimal law with known B), the performance of the UEFC and OEFC laws 
(r, g 1.5-3, Fig. 2) is good, especially since little on-line computation is 
required. 

In order to study further the characteristics of the UEFC and OEFC laws, 
the time histories of the four laws for a representative run are plotted in 

Figure 3: 
Figure 4: 

Control u(K) 
Estimate &k 1 k) 3 [6, 6, isIT 
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Figures 5-7: Estimate f(k 1 k) = [& S& &IT 

Figure 8: Instantaneous cost J(k). 

For this run Pb = PO = 4is , the true values of B and x(O) are 

BT = [OS4 -2.07 -3.421, ~(0)~ = [1.19 3.65 5.561, 

and the performance measure &iJ(K) is 404, 787, 880, and 4301 for the 
LQG, UEFC, OEFC, and CE laws, respectively. 

1- STABLE SYSTEM 
Pb=P.=413 

0.54 
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i, OEFC LAW 
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h 
bz 
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..:..._._.., 

LL 

. . "'. 
-1 

-3.42 

I 
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10 15 18 
STAGE, k 

FIG. 4. Time history of estimate &k 1 k) for the four control laws. 



138 TODA AND PATEL 

A 
Xl 

0 TRUE STATE x (k) 

Cl ESTIMATE 2 (klk) 

2- 

l- 

o- 

4- 

3- 

2- 
A 
x2 

l- 

o- 

-1 i 

h 
x3 

STABLE SYSTEM 

Pb=P,=413 

-10 
0 5 10 15 18 

STAGE k 

FIG. 5. Time history of true state x(k) and estimate P(R / k) for LQG law. 
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FIG. 6. Time history of true state x(k) and estimate 53(k 1 k) for UEFC law. 
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0 TRUE STATE x (k) 

0 ESTIMATE 1 lklkl 

FIG. 7. Time history of true state x(k) and estimate S(k ) k) for OEFC law. 

Observations. The characteristics of the three suboptimal laws are clearly 
shown in these figures. The CE law erroneously exerts large control in the 
beginning (K = 0 - 5 in Fig. 3), thereby incurring large costs (Fig. 8). The 
large control accidentally results in fast learning of B (Fig. 4), and less cost 
J(K) than the UEFC and OEFC laws at later stages (K > 7). Both UEFC and 
OEFC are cautious and very little control energy is implemented in the begin- 
ning (K < 7 in Fig. 3), when larger estimation errors are expected (see Remark 2 
following Eq. (43)). Since UEFC underestimates future control efforts, it is less 
cautious than OEFC and exerts more control at K = 8 - 14 than OEFC, thereby 
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attaining better cost (Fig. 8) and better estimate @k \ k) (Fig. 4). Note that the 
estimation of x(k) for UEFC and OEFC is very good (compare Figs. 6 and 7 
with Fig. 5), although the estimate 6(k 1 k) is not as good as CE. 

1000 

500 

COST FOR 
0 CELAW 
0 OEFCLAW 
0 UEFCLAW 

A LOG LAW 

STABLE SYSTEM 

Pb”P,=413 

10 
STAGE k 

15 18 

FIG. 8. Time history of instantaneous cost J(k) for the four control laws. 

Since the fast learning property of the CE law was observed for unknown B, 
additional simulations were performed with various numbers of stages (N varied) 
to compare the performance of the four laws. The normalized performance rJ 

of the simulations is plotted in Fig. 9 for various N’s. 
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FIG. 9. Dependence of normalized sample mean rJ on the number of stages N. 

Obserwation. The comparative performance of the three suboptimal laws 
in Fig. 9 does not vary significantly for different numbers of stages, and it is 
evident that even for large N’s the CE law does not perform as well as the UEFC 
and OEFC laws. This observation suggests that the fast learning of B of the CE 
law in Fig. 4 is accidental and does not pay off even for large N’s. 

6.2. Unstable System 

The system matrices are given by 

where A has eigenvalues 1.2 and 0.8 f 0.4j. As for the stable system, the 
performance of the four algorithms for 20 Monte Carlo runs is plotted in Figs. 10 
and 11: The sample mean MJ in Fig. 10 and the normalized sample mean r, in 
Fig. 11 for various Pb’s and PO’s. 

Obsereations. 1. The characteristics of the three suboptimal laws are very 
similar to those observed for the stable system. 

2. The performance of the OEFC law is somewhat worse than that in the 
stable case, whereas the UEFC law performs consistently well. The CE law 
performs better than the cautious OEFC and UEFC laws for small Pa (v = 0.1 
and 0.3; i.e., when there is little uncertainty in 6). 
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FIG. 10. Dependence of Monte Carlo performance on P, and P, (sample mean MJ). 

7. CONCLUSIONS 

We have considered a discrete-time linear stochastic adaptive control system 
with unknown control gain matrix (B). Two suboptimal control laws have been 
derived: the UEFC law based on the underestimation of future control and the 
OEFC law based on the overestimation on future control. These laws require 
little on-line computation and at the same time incorporate some information 
on the estimation errors, hence they are in the category of “cautious” 
controls as classified by Wittenmark [3]. T wo single-input third-order systems 
have been simulated to compare the Monte Carlo performance of the laws with 

409/72/I-10 
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FIG. I I. Dependence of normalized sample mean r, on Pb and PO. 

that of the CE and LQG laws. The dependence of the performance of the four 
laws on Pb and P,, (the initial uncertainties on the state x and the control gain B) 
has been studied. The results indicate that the UEFC and OEFC laws perform 
much better than the CE law with only a little extra computation being required. 

Admittedly, the class of systems considered in this study is small. However, the 
UEFC and OEFC laws derived for this class are conceptually simple and 
computationally efficient, and may provide a suitable framework for treating 
the more general class, where the system matrix (A) as well as the control gain 
matrix (B) are unknown. Further research is envisaged in this direction. 

APPENDIX I 

The identities and inequalities used to derive the estimation and control 
laws in the preceding sections are collected and proved where necessary. The 
matrices involved in the following lemmas are assumed to be conformable. 
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LEMMA Al. 

LEMMA A2. 

cs(ABC) = (CT @ A) a(B), 

rs(ABC) = (A @ CT) rs(B). 

C-41) 

(A-3 

tr(AZ3) = [cs(AT)IT es(B), (A3) 

tr(ACTBC) = [cs(C)IT (A @ BT) es(C). (A4) 

For the proofs of (Al), (A3), and (A4), the reader is referred to [9]. The 
identity (Al) is due to [lo]. The proof of (A2) is straightforward and is omitted 

LEMMA A3. If 

A 20 and B 20, then A@B>O. (A5) 

Zf 
A > 0 and B > 0, then A@B>O. C-46) 

Proof. Since A and B are symmetric, A @ B is symmetric. The eigenvalues 
of A @ B are &pi , where hi and pi are the eigenvalues of A and B, respectively 
[l 1, p. 2351. Since A 3 0 and B > 0, Ai 3 0 and pLi > 0, hence 

hipj > 0, Vi, j. 

This implies that A @ B > 0. The proof of (A6) is similar. 

LEMMA A4. If A >, 0 and B E [2 $T] > 0, where B, and B, are square 
matrices of dimensions m and 1, respectively, then 

B, - B,B;‘BST > 0 (A7) 
and 

cG AOB, 
[ A@B, 

AOBzT >. 
I A@B, ‘. (A81 

If B 3 0 and B, is a scalar, then 

B,B, > B,BST. (A9) 

Proof. Since B > 0, B, > 0 and invertible, 

BE I?FZ o%“][B, 
[ 

0 
I[ 

L B;IBST 
B,B;l I, 01,, B, - B;&BaT 01,, I1 > ” I 

which implies that B, - B,B;lBST > 0. 
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For the case B > 0, (A9) clearly holds if B, = 0. If B, > 0, we obtain 
B, - B,BF~B,~ > 0, which implies (A9). 

To prove (A8) we assume that A is an n-dimensional matrix and let a = 
A + <I,; then from (A6) a @ B, > 0 and is invertible, since a > 0 and B, > 0. 
Therefore, 

ET= D h3B, (AlO) 
[ 0 nm.nz 

0 nz,nm itf @ B, - (A^ @ BJ (A @ B,)-l (a @ BsT) DT’ I 

where 

Using identities for inverses and products of Kronecker products [9], we 
can easily write 

(a @ B3) (A @ B,)-l = I, @ B,B;‘, 

A^ @ B, - (a @ BJ (a @ BJ-’ (a @ BaT) = a @ (B, - B,B;‘BsT). 

Therefore, from (AIO) 

^ c = ljl c = 
[ 

I 0 nm,nz In 6k Lz I[ A Of4 0 nm,nz %z,nm A @ (B, - B3B;lBsT) 1 

[ 
I 

x onli(:m 

I, @I B;lBsT 
I . nz 1 (All) 

From (A5) and (A7), A @B, 3 0 and A @ (B, - B,B;lBaT) > 0, hence 
(All) implies C > 0. 

LEMMA A5. If A 2 0, B > C, then 

tr[AB] 3 tr[AC]. 6412) 

Proof. tr(AB) - tr(AC) = tr[A(B - C)]. Since B 3 C, (B - C)l/z exists 
and 

tr[A(B - C)] = tr[(B - C)ljz A(B - C)1/2]. 

Since A > 0, (B - C)tj2 A(B - C)li2 > 0. Consequently, tr[A(B - C)] > 0. 
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APPENDIX II: LIST OF SYMBOLS 

147 

General 

XT 

t4X) 
I, 

0 * 
x”;o 

x30 

X@Y 

r 44 
es(X) 
EM 
EL% I Yl 
x - N(z, X) 

a.s. 
CE 
OLOF 

LQG 
UEFC 
OEFC 

Transpose of a matrix X 
Trace of a square matrix X 
n-Dimensional identity matrix 
m x n Null matrix 
Matrix X is positive definite 

Matrix X is positive semidefinite 

Kronecker product of X and Y 

Row string vector of X 
Column string vector of X 
Expectation of a random vector x 
Conditional expectation of a random vector x given Y 
x Has Gaussian distribution with mean f and covariance 

matrix X 
With probability 1 (almost surely) 
Control law with enforced certainty equivalence 

Open loop optimal feedback control law 
Optimal control law when system parameters are known 

Control law underestimating future control 
Control law overestimating future control 

Subscript or superscript “U” (“0”) 
Variables pertain to algorithms for UEFC (OEFC). 

Symbols for Derivation 

k Time index 

N Number of stages 

44 n-Dimensional state vector at k 

44 m-Dimensional control vector at k 

Y(k) Z-Dimensional measurement vector at k 

5(k) r-Dimensional plant noise vector at k 

?(k) Z-Dimensional measurement noise vector at k 
A n X n System matrix 
B n X m Control gain matrix 

c 1 x 12 Measurement matrix 
D It X Y Plant noise gain matrix 
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b 

b 

Pb 

20 

PO 

Q(k) 
R(k) 

J 
JW 
S(k + 1) 
44 
Y(k) 
U(k - 1) 

44 

F(k) 

G 

H 

.S(i 1 k) 

P(i I 4 

.rrj(i I k) 

Jk 
JZ 
M(i I 4 
Mdi I k) 
r 
kdk) 
%J(k) 
Vu@) 
~uv4 
PLJW 
@o(k) 
wow 
vow 
so(k) 
P”(k) 
4i + 1 I k) 
o(i + 1 I k) 

Row string vector of B 

A priori mean of b 

A priori covariance matrix of b 

Mean of a(0) 

Covariance matrix of x(0) 

Covariance matrix of f(k) 

Covariance matrix of q(k) 

Performance measure 

Instantaneous cost at k 

Positive semidefinite weighting matrix for x(k + 1) 

Positive definite weighting matrix for u(k) 

Measurement data up to time k 

Past controls up to time k - 1 

(n + nm)-Dimensional augmented state vector 

(n + nm) x (n + nm)-Augmented state matrix 

(n + nm) x r-Augmented plant noise gain matrix 

I x (n + nm)-Augmented measurement matrix 

Conditional mean of z(i) given Y(k) 

Covariance of estimation error S(i 1 k) - z(i) 

Submatrix of P(i 1 k) (j = I, 2, 3) 

Cost-to-go at k 

Optimal cost-to-go 

Conditional mean of z(i) z(i)T given Y(k) 

Submatrix of M(i 1 k) (j = I, 2, 3) 

n2m x m Matrix composed of I, and O,,,, 

m x m Matrix 
m-Dimensional vector 
n x n Matrix i 
Scalar 
Scalar 
m x m Matrix 

i 

Variables for UEFC algorithm 

m-Dimensional vector 
n x n Matrix 
Scalar i 
Scalar 

i 

Variables for OEFC algorithm 

Scalar 
m x m Matrix 
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Additional Symbols for Monte Carlo Simulations 

JfJ Sample mean of performance measure 

rJ Normalized sample mean of suboptimal laws 

u A priori standard deviation for x(O) or b 

6, jth element of estimate 6(/z j k) (j = 1,2, 3) 

9j jth element of estimate f(k / k) (j = 1, 2, 3). 
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