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ABSTRACT 

This paper presents an algorithm for computing the eigenvalues of a symplectic 
pencil that arises in one of the commonly used approaches for solving the discrete-time 

algebraic Riccati equation. The algorithm is numerically efficient and reliable in that it 
employs only orthogonal transformations and makes use of the structure of the 

symplectic pencil. It requires about one-fourth the number of floating-point opera- 
tions that the QZ algorithm uses to compute the eigenvalues of the pencil directly. 

The proposed method can be regarded as being analogous for the case of symplectic 
pencils to the method developed by Van Loan for computing the eigenvalues of 
Hamiltonian matrices. 

1. INTRODUCTION 

A matrix S E [W2nX2” is called a symplectic matrix if 

SJS’ = J, (1.1) 
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where 
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(1.2) 

In (1.2), I, denotes the n X n identity matrix and 0, denotes the n X n null 
matrix. A pencil K - hL, with K E [W2nx2n and L E R2nx2”, is called a 
symplectic pencil if 

KJKT = LILT. (1.3) 

In this paper we consider the problem of computing the eigenvalues of a 
symplectic pencil K - AL which arises in solving the well-known discrete- 
time algebraic Riccati equation (DARE) [7, 81: 

DR( P) = ATPA - P - ArPB( D + BTPB)-lBTPA + H = 0, (1.4) 

where H = CTC E RnXn and D E RmX”~ (m < n> are positive semidefinite 
and positive definite matrices respectively, and A E [WnXn and B E Rnx”. A 
positive semidefinite matrix P satisfying (1.4) is required in solving the 
well-known discrete-time linear quadratic optimal-control problem [a]. It can 
be shown that if (A, B) is a stabilizable pair and (A, C) is a detectable pair, 
then (1.4) has a unique positive semidefinite solution P = PT E RnXn which 
is a stabilizing solution, i.e., the closed-loop state matrix 

A, = A - B( D + BTPB)-1 BTPA (1.5) 

has all its eigenvalues inside the unit circle with center at the origin of the 
complex plane. 

A well-known approach to solving the above problem numerically is that 
proposed in [7] and is based on the properties of the regular symplectic pencil 
K - hL where 

K = _AH ; 
[ I 

(1.6a) 

and 

(1.6b) 



EIGENVALUES OF A SYMPLECTIC PENCIL 593 

with F = BD-‘BT. If (A, B) is a stabilizable pair and (A, C) is a detectable 
pair, then the following results can be shown [7] for such a pencil: 

(a) If A is an eigenvalue of K - AL, then so is l/h, i.e., the pencil has n. 
eigenvalues inside the unit circle and n eigenvalues outside, with no eigen- 
values on the unit circle. 

(b) The eigenvalues of K - AL inside the unit circle, i.e. the stable 
eigenvalues, are the eigenvalues of the state matrix A, of the closed-loop 
discrete-time system. 

(c) The unique positive semidefinite solution P of (1.4) is given by 

P = u,,tJ,-,’ (l-7) 

where Uii, U,, E lRnx” and the columns of 
Ull 

[ I U2, 
span the n-dimensional 

deflating subspace of K - AL corresponding to its stable eigenvalues. 

The approach proposed in [7] for computing P is to use the QZ algorithm 
[2, 61 to solve the generalized eigenvalue problem for the pencil K - AL. 

The computed eigenvalues are then reordered into groups of stable and 

unstable eigenvalues to obtain the columns of 
% 

I 1 U2, * 
The QZ algorithm does 

not take into account the special (symplectic) structure of the pencil K - AL, 

so that the transformations employed in this algorithm destroy this structure. 
On the other hand, as the following result shows, it is possible to carry out 
the required transformations on K - AL so that its symplectic structure is 
preserved. 

THEOREM 1.1. If the regular symplectic pencil K - AL has no eigen- 

value of modulus 1, then there exist an orthogonal matrix Q E R2nx2n and 

an orthogonal symplectic matrix 

with Z,,, Z,, E RnXn, such that 

(1.8a) 

(1.8b) 
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and T - AR is a syrnplectic pencil in generalized real Schur form (GRSFY, 
where T,, - AR,, has all its eigenvalues inside the unit circle and T,, - AR,, 

has all its eigenvalues (including infinite ones> outside the unit circle. 

Proof. See [S]. n 

There are two types of orthogonal symplectic matrices that are particu- 
larly useful in performing structure-preserving transformations on symplectic 
pencils. The first type consists of Householder symplectic matrices defined by 

P(ku) = 

where 

p^ 0, 

[ 1 0” p^’ 
i E R”X”, (1.9) 

2UUT 
p”=I,_I_ 

UTU -- 
(l.lOa) 

and 

UT= 0 [ >***> 0, Uk) . . . , U”] # QT. (l.lOb) 

The second type consists of Givens (Jacobi) symplectic matrices defined by 

G(k,c,s) = 
c s 

[ 1 -s C’ 
c, s E lRnxn, (1.11) 

where 

C = diag[Z,_,,c, In-J, (1.12a) 

S = diag[O,_,, s,Lkl, (1.12b) 

and c2 + s2 = 1. Algorithms H and J in [9J show how P(k, u_) and G(k, c, s) 

can be determined to zero specific entries in a vector. 
Theorem 1.1 and its proof in [S] h s ow that it is possible to reduce K - AL 

using structure-preserving orthogonal transformations to the GRSF (1.8), but 

‘A pencil in generalized real Schrfon is a real upper quasitriangular pencil with 1 X 1 

and (2 X 2) diagonal blocks. 
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it provides an eficient QZ-type algorithm for doing so only for a special case, 
namely when rank(F) = 1 or ranks H) = 1. In order to obtain a stabilizing 
solution of the DARE, we need to compute the eigenvalues of the pencil 
K - AL as well as its deflating subspace corresponding to the set of stable 
eigenvalues. The algorithm in [5] enables us to do this for the special case 
considered there. However, to the best of our knowledge, a numerically 
stable algorithm for the general case which preserves or uses the symplectic 
structure of the pencil K - AL has yet to be developed. In this context, it is 
worth noting that a similar situation exists for Hamiltonian matrices, i.e., for 
the continuous-time algebraic Riccati equation. 

In this paper, we consider the problem of computing only the eigenvalues 
of the symplectic pencil K - AL. To do this we employ orthogonal transfor- 
mations only and make use of the special structure of the pencil. The 
resulting algorithm is therefore numerically backward stable and requires 
significantly less computation than a direct application of the QZ algorithm. 
The method can be regarded as the analog for the case of symplectic pencils 
of the method proposed by Van Loan [9] for computing the eigenvalues of 
Hamiltonian matrices. An efficient algorithm that uses the symplectic struc- 
ture of the pencil K - AL to compute its eigenvalues has been proposed by 
Lin [4]. It requires about one-fourth the floating-point operations of the QZ 
algorithm. However, as pointed out in [4], the method has the disadvantage 
that it uses the “less favorable” (I, F> transformations, which in certain cases 
can cause numerical instability. Also, in order to use the (I’, F) transforma- 
tions, Lin’s algorithm requires the use of nonorthogonal (elementary) trans- 
formations to reduce the matrix A to a diagonal matrix. The algorithm that 
we describe in the next section is almost as efficient as the one in [4] but 
without the disadvantages mentioned above. 

2. COMPUTING THE EIGENVALUES OF K - AL 

As in-[4], instead of computing the eigenvalues of K - AL we compute 

the eigenvalues of a pencil 2 - Ai, where 

I? = KILT + LJKT, (2.la) 

I? = LILT. (2.lb) 

The pencil l? - Ai is called an S + S-’ transformation of the symplectic 
pencil K - AL. It can be shown [4] that if A is an eigenvalue of K - AL, 
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then A + l/A fs an_eigenvalue of Z? - Ai. In order to compute the 
eigenvalues of K - AL, we note that 

AF - FAT 
= 

-( A2 + FH + Z)T 

A2 + FH + Z FAT - AF 
= 

ATH - HA (A2+FH+Z) 
T] - A[ ;: ;T]lh (2.2) 

which implies that the eigenvalues of i - Ai are the same as those of the 
pencil M - AN, where 

A2 + FH + I FAT - AF 
M= I[ 1 =y w 

ATH - HA (A’+FH+Z)~ - X YT 

and 

NzAo 
[ 1 0 AT’ 

(2.3a) 

(2.3b) 

Note that X and W are n X n skew-symmetric matrices. 
We now present an algorithm for reducing M - AN to a block-triangular 

structure, i.e., 

M= 
Ml, Ml2 I 1 0 Ml? 

(2.4a) 

and 

N= 
N,, N,2 

[ 1 0 N:, ’ 
(2.4b) 

where M,, E R nxn is an upper Hessenberg matrix, N,, E [WnXn is an upper 
triangular matrix, and M,,, N,, E IF!“‘” are skew-symmetric matrices. The 
eigenvalues of M - AN can then be computed by applying the QZ algorithm 
to find the eigenvalues of the pencil M,, - AN,,. 
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Note that M and N can be considered to have similar structure if we 
regard the null matrices in N as null skew-symmetric matrices. The transfor- 
mations that we will use preserve this structure. There are two types of 
transformations that will be used in the algorithm, both of which preserve the 
structure of the pencil A4 - AN. The first type involves similarity transforma- 
tions on A4 and N using Givens symplectic matrices G(k, c, s), i.e., 

M := GMGT, N := GNGT. (2.5) 

The second type of transformations has the following form: 

M := QMZ, N := QNZ, (2.6) 

where 

u 0 
Q- o v 

[ 1 and Z= 

where U, V E Rnx n are orthogonal matrices representing the application of 
Givens or modified Householder transformations [2]. In our algorithm, we 
use 2 X 2 modified Householder transformations instead of Givens transfor- 
mations because the former are a little more efficient. We denote the second 
type of transformations by the pair <Q, Z). It can be easily verified that the 
above transformations applied to the pencil M - AN preserve the structure 
and the eigenvalues of M - AN. 

To illustrate the reductions performed by the algorithm, we consider the 
following case (n = 5): 

x x x x x 0 x x x x 

xxxxxx 0 x x x 

xxxxxxxoxx 
xxxxxxxxOx 

xxxxxxxxx0 

oxxxxxxxxx 
X 0 x x x x x x x x 

X x 0 x x x x x x x 

xxxoxxxxxx 
x x x x oxxxxx 

(2.7a) 
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x x x x x 0 0 0 0 0 
x x x x x 0 0 0 0 0 
x x x x x 0 0 0 0 0 

x x x x x 0 0 0 0 0 

NcA O = 1 I 
x x x x x 0 0 0 0 0 

0 AT 
. (2.7b) 

OOOOOxxxxx 
OOOOOxxrxr 
0 ooooxxxxx 
OOOOOxxxxx 
oooooxxxxx 

The aim is to reduce M and N to block upper triangular matrices by 
zeroing the 5 X 5 (2,l) block of M w 1 e h’l p reserving the null structure of the 
corresponding block of N. We do this using the orthogonal transformations 
mentioned above. First, we use Householder transformations to reduce A to 
upper triangular form. This corresponds to a (Qr, 2,) transformation on the 
pencil M - AN, where 

‘:1 I”, 
” 

2, = 
L 0 

[ 1 0 ul” 

M= 

N= 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

0 x x 0 x 

X 0 x x x 

X x 0 x x 

x xxox 
x x x x 0 

x x x x ixxxx 
0 0 x x x 

0 0 0 x x 

0 0 0 0 x 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 

0 x x x x 

x 0 x x x 

x x 0 x x 

x x x 0 x 

x x x x 0 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

x 0 0 0 0 
x x 0 0 0 
x x x 0 0 
x x x x 0 
x x x x x 

(2.8) 
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Next, we reduce the elements xsi, xsi, and x4i in the first column of X 
to zero using 2 X 2 modified Householder transformations. First, we zero xsi 
using xsi. The (Q, 2) transformation required to do this introduces a 
nonzero entry in az2 [denoted by B in (2.9)] which can be zeroed using az2 

by means of a Householder transformation on rows 2 and 3 of N. The 
elements lcsi and x4i can be eliminated in the same way while maintaining 
the upper triangular structure of A. Note that zeros are also in&educed at 
corresponding locations in the first row of X because the (Q, 2) transforma- 
tion is structure-preserving. If we denote the Householder transformations 
applied in this step by V, and U,, we have 

where 

M= 

r 

N= 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

0 000x 
0 0 x x x 

0 x 0 x x 

0 x x 0 x 

x x x x 0 

x xxx 

i x xxx 

0 8 xxx 

0 063xX: 
0 0 00x 

0 0 0 0 0 
0 0 0 0 0 

0 0 000 

0 0 0 0 0 
0 0 0 0 0 

N := 

0 
x ii 

x x x 

x x 

x x t x x 

x x x 0 x 

x x x x 0 

x x x x x 

x x x x x 

x x x x x 

x x x x x 
x x x x x 

000 00 
000 00 
000 00 

000 00 
000 00 1 
x00 00 
xx800 

xxx00 

x x x x 0 
xxx xx 

(2.9) 

We now apply a Givens symplectic similarity transformation G, = 
G(5, c, s) to zero xsi using ysi, i.e., 

M := G,MG;, N := G,NG;. 
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This results in 
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M= 

N= 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

0 0 0 0 0 
0 0 x x x 

0 x 0 x x 

0 x 0 x x 

L 0 x x 0 x 

x x x x x 

0 x x x x 

0 0 x x x 

0 0 0 x x 

0 0 0 0 x 

0 0 0 0 0 
0 0 0 0 0 
0 0000 
0 0 0 0 0 
0 0 0 0 0 

0 x x x x 

x 0 x x x 

x x 0 x x 

x x x 0 x 

x x x x 0 

x x x x x 

x x x x x 

x x x x x 

x x x x x 
x x x x x 1 
0 0 0 0 x 

0 0 0 0 x 

0 0 0 0 x 

0 0 0 0 x 

x x x x 0 

x 0 0 0 0 
x x 0 0 0 
x x x 0 0 
x x x x 0 
x x x x x 

(2.10) 

It is easy to verify that the (2,l) block of N preserves its null structure 
because of the Givens similarity transformation on N and the upper triangu- 
lar structure of the (II)-block. Also, it should be noted that a row and a 
column of the (1,2) block of N become nonzero as a result of this transfor- 
mation, although the skew-symmetric structure of the block is preserved. We 
have now reduced the first row and column of X to zero. In order to 
complete this first step, we need to zero ysi, y4i, and ysi. This will allow us 
to perform the next step without destroying the structure we have already 
obtained. Also, at the termination of the algorithm, it will give us Y in upper 
Hessenberg form and A in upper triangular form. 

Elimination of ysi, y4i, and ySi can be carried out using 2 X 2 modified 
Householder transformations. First, the element ySi is zeroed using y4i. This 
results in a nonzero entry in a54 [denoted by 8 in (2.11)], which can be 
zeroed using a55 with a Householder transformation on columns 4 and 5 of 
N. The elements y4i and ysi can be zeroed in the same way while 
maintaining the upper triangular form of A. The procedure is similar to that 
used in the Hessenberg-triangular reduction, the first step in the QZ algo- 
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rithm for solving the generalized eigenvalue problem; e.g., see [2]. Denoting 
the Householder transformations by Us and Vsr, we have 

M := 
4 0 
0 v3 

M 
v3’ 0 

[ 1 0 7J3’ ’ 

where 

I 

I M= 

x x x x x 

x x x x x 

0 x x x x 

0 x x x x 

0 x x x x 

N= 

0 0 0 0 0 
0 0 x x x 

0 x 0 x x 

0 x x 0 x 

0 x x x 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 

N := 

oxx x x 

x0x x x 

xx0 x X 

xxx 0 x 

xxx x 0 

x00 0 0 
xx@0 0 

x x x @ 0 
xxx x 63 
x x x x x 

(2.11) 

The problem of reducing X to a null matrix has now been essentially 
deflated to that of order n = 4. We can proceed to the next step in the 
reduction-to zero the second column and row of X. We use modified 
Householder transformations to zero xs2 and x4s. This introduces nonzero 
entries for ad3 and as4, which can be eliminated by Householder transforma- 
tions on the appropriate rows of A. The (0, 2) transformation in this step 
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yields the following structure: 

bf := Q4Mz, = 

x x x x x 

x x x x x 

0 x x x x 
0 x x x x 

0 x x x x 

0 0 0 0 0 
0 0 0 0 x 

0 0 0 x x 
0 0 x 0 x 
0 x x x 0 

0 x x x x 

x 0 x x x 

x x 0 x x 

x x x 0 x 

x x x x 0 

x x 0 0 0 
x x x x x 
x x x x x 

x x x x x 
x x x x x 

oxx x x 
x0x x x 

xxox x 

xxx0 x 

xxxx 0 

r 

t : 

x x x 

x x OOLX 
0 0 c3 x x 
0 0 0 @ x 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

x00 0 0 
xx00 0 
xxx@ 0 
xxxx Q 

xxxx x 

where 

Next, we eliminate x52 using Y52 by applying a 
transformation G, = G(5, C, s), i.e., 

M = G,MG,T 

symplectic Givens 

x x x x x 0 x x x x 
x x x x x x 0 x x x 

oxxxx xxoxx 
Oxrxx xxrox 
Oxxrx xxxxo 

00000 xx000 
00000 xxxxx 
oooxx xxxxx 
00X0X xxxxx 
0 oxro XxXxX 
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x x x x 

ixxxx 

0 x x x x 

x 0 x x x 

0 oxxx xxoxx 

oooxx xxxox 

0 000x xxxxo 

N=G,NG;= 

0 0 0 0 0 x 0 0 0 0 
00000 xx000 
00000 xxx00 
0 0000 xxxxo 
00000 xxx.xx 

As before, the null structure of the (2,l) block of N is not affected by this 
transformation. We can now zero yd2 and ys2 while preserving the upper 
triangular structure of A: 

M = Q,MZ, = 

x x x x x 

Pi x x x x 

X X X oixxx 
0 0 x x x 

0 0000 
0 0000 
0 0 0 x x 

0 0 x 

0 0 x 

x x 

i 

X 

0 ii 

0 0 

0 0 
0 0 

0 0 
0 0 
0 0 

v, 0 0 1 
V,’ 

0 x 
x 0 

x x 

x x 

x x 

x x 

8 x 

0 0 
0 0 

0 0 
0 0 
0 0 

0 x x x x 

x 0 x x x 

x x 0 x x 

x x x 0 x 

x x x x 0 

x x 0 0 0 
x x x 0 0 

x x x x x 

x x x x x 

x x x x x 

oxx x x 

xoxx x 

xxox x 

x x x 0 
x x x x i 

x000 0 

xx00 0 
xxx@ 0 
xxx x @ 

xxxx x 

where 

Qs = 
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The result is a further deflation of the problem. Repeating the procedure to 
reduce the third and fourth columns and rows of X to zero, we finally get the 
following structure: 

x x x x x 
x x x x 

;xxxx 
0 0 x x x 
0 0 0 x x 

M= 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

x x x x x 
0 x x x x 
0 0 x x x 
0 0 0 x x 
0 0 0 0 x 

N= 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 x x x x 

x 0 x x x 

x x 0 x x 

x x x 0 x 

x x x x 0 

x x 0 0 0 
x x x 0 0 
x x x x 0 
x x x x x 

x x x x x 

0 x x x x 

x 0 x x x 

x x 0 x x 

x x x 0 x 

x x x x 0 

x 0 0 0 0 
x x 0 0 0 
x x x 0 0 
x x x x 0 
x x x x x 

It should be noted that both M and N are in block upper triangular form 
with a 5 x 5 null matrix in the (2,l) block of each. Also, Y is an upper 
Hessenberg matrix and A is an upper triangular matrix. Clearly, the eigenval- 
ues of the pencil M - AN can be obtained from the eigenvalues of the 
pencil Y - AA. The QZ algorithm can be applied to compute the eigenval- 
ues of the n x n pencil Y - AA. Furthermore, it should be noted that the 
preliminary step in the QZ algorithm involving the Hessenberg-triangular 
reduction is not needed, since Y and A are already in the required form. 
Lastly, if pi, i = 1, . . . , n, are the eigenvalues of the pencil Y - AA, then 
the eigenvalues of the pencil K - AL are the roots (Y~, Pi (I (~~1 < 1, 1 Pi1 > I> 
of the equation .z2 - /_$z + 1 = 0, i = I..., n, for pi z m. If pi = 03, then 
cri = 0, Pi = 00. To separate the stable eigenvalues of K - AL from the 
unstable ones, we let hi = (Y~ and A,, +i = pi, i = 1, . . . , n. 



EIGENVALUES OF A SYMPLECTIC PENCIL 605 

ALGORITHM 2.1 (Block-triangular reduction). Given a 2n X 2n symplec- 
tic pencil M - AN where M and N are in the form (2.3), this algorithm 
overwrites M and N by block upper triangular matrices QMZ and QNZ 
respectively with the structure shown in (2.4). The matrices Q and Z are 
orthogonal. 

1. Compute Householder matrices P,, P,, . . . , P,_ 1 such that if U = 
P n-1>> . . . . P,, then UA is upper triangular. 

2. For i = l,..., n - 1 

M := QiMZi, 
N := QiNZi, 
where Qi := diag[Pj, I,] and Zi := diag[Z,,, Pi]. 

End 
3. Forj=l,...,n-2 

For i =j + 1,. . . , n - 1 

Determine a Householder matrix v E Rzx2 such that 

M := QMZ, N := QNZ, 

where 

Q = diag[ Zn+i-l,v, Z_-r] and 

Z=diag[Zi_r,V, zZ,_i-l]. 

Determine a Householder matrix U E Rzx 2 such that 

M := QMZ, N := QNZ, 
where 

Q = diag [ Ii-r, u, Zz,i-I] and 

Z = diag [ Zn+i_-l, 0, I,,-11. 

End 
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Determine constants c and s with c2 + s2 = 1 such that 

[ 2 :I[::;] = [ ;;I. 
M == GMGT, N := GNGT, 
where G = G(n, c, s> is a symplectic Givens transformation matrix. 
For i = rr,n - 1,. . . , j + 2 

Determine a Householder matrix 5 E Rzx 2 such that 

M := QMZ, N := QNZ, 
where Q = diag[Zi_,, V, 12n_i] and Z = diag[l,+j-2, 0, In-i]. 
Determine a Householder matrix V E R2x2 such that 

ll”i,i-l a,,]V = [o *]. 

M := QMZ, N := QNZ, 
where Q = &ag[Z,+i_2,V, Z,_i] and Z = diag[Ii-,,V, Iz,,-i]* 

End 
End 

This algorithm requires about $r” flops. The transformations described 
in the algorithm can be carried out directly on the appropriate rows and 
columns of M and N, so that the matrices Q and Z do not need to be 
constructed explicitly. Also, since only the eigenvalues are required, the 
transformations do not need to be accumulated. Using the roundoff proper- 
ties of Householder and Givens transformations, it can be shown that 
Algorithm 2.1 is numerically backward stable, i.e.,Aif we de_note the output of 
Algorithm 2.1 by M - AN, then the matrices M and N can be shown to 
satisfy 

Q;( M + E,)Z, = 6, 

Q;(N+E,)Z, =s, 

where Q. and Z, are exactly orthogonal, IlE,ll~ = c#4n>ullMII~, and IIE,IIF 
= +(n)ull N II p. In the above expressions, II(.)]] F denotes the Frobenius norm 
of the matrix (*I, 4 and I) are low-degree polynomials in n (with small 
coefficients), and u is the unit roundoff [2]. 
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We can now present the complete algorithm for computing the eigenval- 
ues of the symplectic pencil K - AL. 

ALGORITHM 2.2 (Eigenvalues of K - AL). Given a 2n X 2n symplectic 
pencil K - AL in the form (1.6), this algorithm determines its eigenvalues 
hi, i = l,..., 2n. The eigenvalues are separated into sets of stable and 
unstable eigenvalues, i.e., Aj, i = 1,. . . , n, are stable, while hi, 1 = n + 

1 , . . . ,2n, are unstable. 

1. Compute the pencil M - AN from the submatrices of K - AL as in 
(2.3). 

2. Apply Algorithm 2.1 to reduce M - AN to upper block triangular 
form and obtain the pencil Y - AA in Hessenberg-triangular form. 

3. Using the QZ algorithm, compute the eigenvalues pi, i = 1,. . . , n, of 
Y - AA. 
Comment: Since Y - AA is already in Hessenberg-triangular form, the 
first step in the QZ algorithm (which is the reduction to such a form) is 
not required. So, if EISPACK subroutines [l] are used for the QZ 
algorithm, the subroutine QZHES is not needed; only the subroutines 
QZIT and QZVAL are required. 

4. Compute the eigenvalues of K - AL as follows: 
For i = 1,. . . , n 

If I /Al = aJ 
Ai := 0 
Anti := cc 

Else 
Ly := +[ Pi + ( EL; - 4)1/Z] 

If IaI < 1 
Ai := (y 

A,+i := l/cu 

Else 

Ai := l/a 

A,+i := (Y 

End 
End 

End 
Comment: In the above step, the “value” of 00 can be taken as the 
reciprocal of the “threshold” value of zero used in the subroutine QZIT 

in EISPACK. 

Operation count: We now give an estimate of the amount of computa- 
tion performed by Algorithm 2.2 in terms of the number of flops required. 
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We use the usual definition of a jlop, i.e., the amount of work associated with 
computing s := s + aikbkj: 

Computing M - AN 

Algorithm 2.1 

Computing2 the eigenvalues of Y - AA 

Total 

4n3 
yn3 

10n3 

yn3 

If the eigenvalues of K - AL are computed by a direct application of the QZ 
algorithm, then approximately 120n3 flops are needed, which implies that the 
work required by the proposed algorithm is about one-fourth that of the QZ 
algorithm. The algorithm proposed by Lin [4] involves approximately yn” 
flops, which is comparable to the proposed algorithm. However, as men- 
tioned earlier, some of the transformations used in [4] for the reduction of 
M - AN to a block upper triangular form can lead to numerical instability. 
Such a situation will not arise in Algorithm 2, because the corresponding 
reduction (Algorithm 2.1) is numerically backward stable. 

3. NUMERICAL EXAMPLES 

In this section, we illustrate the numerical performance and properties of 
the algorithms proposed in the preceding section. All computations were 
performed on a Sun 4/37O computer using the f77 compiler. 

EXAMPLE 1. This example is the same as Example 1 in [4] and Example 
2 in [7]. It corresponds to a symplectic pencil K - AL of order 8 whose exact 
eigenvalues are A, = A, = A, = 0, A, = (21 - 5J17)/4, As = (21 + 

5J17)/4, A, = A, = A, = cc). The finite eigenvalues obtained using Algo- 
rithm 2.2 and the QZ algorithm are shown in Table 1. The eigenvalues A, 
and A, evaluated to 15 significant figures are 9.6117967977924IE - 02 and 
1.04038820320221~ + 01 respectively. 

EXAMPLE 2. In this example, we used the 12 X 12 symplectic pencil 
considered in [4]. This pencil has one infinite eigenvalue and 11 finite ones. 

‘For an rz x n pencil A - AB, the QZ algorithm requires about 15n3 flops, of which 5n3 
flops are needed for the Hessenberg-triangular reduction [z]. 
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TABLE 1 

Algorithm 2.2 QZ algorithm 

o.ooooooooooooooE + 00 o.ooooooooooooooE + 00 

o.oo~ooooooooooE + 00 o.ooooooooooooooE + 00 

o.ooooooooooooooE + 00 o.ooooooooooooooE + 00 

9.61179679779243E - 02 9.61179679779243E - 02 
1.04038820320221~ + 01 1.04038820320221~ + 01 

The finite eigenvalues obtained using Algorithm 2.2 and the QZ algorithm 
are shown in Table 2. 

EXAMPLE 3. Algorithm 2.2 has been tested with several examples 
of 50 x 50 random symplectic pencils K - AL with reasonably well- 
conditioned eigenvalues. The eigenvalues were also computed by directly 
applying the QZ algorithm to the pencil K - AL. In each case, the eigenval- 
ues were arranged in order of increasing magnitude, and the largest absolute 
error was computed, i.e., maxilai - biI, where a, denotes the ordered set of 
eigenvalues computed using Algorithm 2.2 and bi denotes those computed 
using the QZ algorithm. This value was found to be of the order of 10-i”. 

4. CONCLUSIONS 

In this paper, we have presented an algorithm for computing the eigen- 
values of a symplectic pencil that arises in solving the discrete-time algebraic 
Riccati equation. The approach is analogous to that developed by Van Loan 
[9] for Hamiltonian matrices. Our algorithm uses the so called S + S-’ 
transformation [4] of the symplectic pencil to obtain a pencil in which the two 
submatrices on the diagonal are transposes of each other, and the two 
off-diagonal submatrices are skew-symmetric. The eigenvalues of this pencil 
are related in a simple way to those of the symplectic pencil and are 
computed using transformations that preserve its structure. However, unlike 
the transformations in [4], the structure-preserving transformations used in 
the proposed algorithm are all orthogonal (Givens symplectic and House- 
holder). An operation count of the algorithm indicates that it is almost as 
efficient as that in [4], requiring about one-fourth the number of flops that 
the QZ algorithm would use if applied directly to the given symplectic pencil. 
In the numerical experiments performed on a number of random symplectic 
pencils of order 50 there was no noticeable difference in accuracy in the 
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eigenvalues computed using our algorithm and those computed using the QZ 
algorithm. 
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