1,830 research outputs found

    Computationally Efficient Zero Noise Extrapolation for Quantum Gate Error Mitigation

    Full text link
    Zero noise extrapolation (ZNE) is a widely used technique for gate error mitigation on near term quantum computers because it can be implemented in software and does not require knowledge of the quantum computer noise parameters. Traditional ZNE requires a significant resource overhead in terms of quantum operations. A recent proposal using a targeted (or random) instead of fixed identity insertion method (RIIM versus FIIM) requires significantly fewer quantum gates for the same formal precision. We start by showing that RIIM can allow for ZNE to be deployed on deeper circuits than FIIM, but requires many more measurements to maintain the same statistical uncertainty. We develop two extensions to FIIM and RIIM. The List Identity Insertion Method (LIIM) allows to mitigate the error from certain CNOT gates, typically those with the largest error. Set Identity Insertion Method (SIIM) naturally interpolates between the measurement-efficient FIIM and the gate-efficient RIIM, allowing to trade off fewer CNOT gates for more measurements. Finally, we investigate a way to boost the number of measurements, namely to run ZNE in parallel, utilizing as many quantum devices as are available. We explore the performance of RIIM in a parallel setting where there is a non-trivial spread in noise across sets of qubits within or across quantum computers.Comment: 10 pages, 10 figure

    The Antitumorigenic Function of EGFR in Metastatic Breast Cancer is Regulated by Expression of Mig6

    Get PDF
    Numerous studies by our lab and others demonstrate that epidermal growth factor receptor (EGFR) plays critical roles in primary breast cancer (BC) initiation, growth and dissemination. However, clinical trials targeting EGFR function in BC have lead to disappointing results. In the current study we sought to identify the mechanisms responsible for this disparity by investigating the function of EGFR across the continuum of the metastatic cascade. We previously established that overexpression of EGFR is sufficient for formation of in situ primary tumors by otherwise nontransformed murine mammary gland cells. Induction of epithelial-mesenchymal transition (EMT) is sufficient to drive the metastasis of these EGFR-transformed tumors. Examining growth factor receptor expression across this and other models revealed a potent downregulation of EGFR through metastatic progression. Consistent with diminution of EGFR following EMT and metastasis EGF stimulation changes from a proliferative to an apoptotic response in in situ versus metastatic tumor cells, respectively. Furthermore, overexpression of EGFR in metastatic MDA-MB-231 BC cells promoted their antitumorigenic response to EGF in three dimensional (3D) metastatic outgrowth assays. In line with the paradoxical function of EGFR through EMT and metastasis we demonstrate that the EGFR inhibitory molecule, Mitogen Induced Gene-6 (Mig6), is tumor suppressive in in situ tumor cells. However, Mig6 expression is absolutely required for prevention of apoptosis and ultimate metastasis of MDA-MB-231 cells. Further understanding of the paradoxical function of EGFR between primary and metastatic tumors will be essential for application of its targeted molecular therapies in BC

    Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway

    Get PDF
    Current antifungal therapies have limited effectiveness in treating invasive fungal infections. Furthermore, the development of new antifungal is currently unable to keep pace with the urgent demand for safe and effective new drugs. Auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, inhibits growth of a diverse array of clinical isolates of fungi and represents a new antifungal agent with a previously unexploited mechanism of action. In addition to auranofin\u27s potent antifungal activity against planktonic fungi, this drug significantly reduces the metabolic activity of Candida cells encased in a biofilm. Unbiased chemogenomic profiling, using heterozygous S. cerevisiae deletion strains, combined with growth assays revealed three probable targets for auranofin\u27s antifungal activity-mia40, acn9, and coa4. Mia40 is of particular interest given its essential role in oxidation of cysteine rich proteins imported into the mitochondria. Biochemical analysis confirmed auranofin targets the Mia40-Erv1 pathway as the drug inhibited Mia40 from interacting with its substrate, Cmc1, in a dose-dependent manner similar to the control, MB-7. Furthermore, yeast mitochondria overexpressing Erv1 were shown to exhibit resistance to auranofin as an increase in Cmc1 import was observed compared to wild-type yeast. Further in vivo antifungal activity of auranofin was examined in a Caenorhabditis elegans animal model of Cryptococcus neoformans infection. Auranofin significantly reduced the fungal load in infected C. elegans. Collectively, the present study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antifungal agent and may offer a safe, effective, and quick supplement to current approaches for treating fungal infections

    Adipose-derived Stem Cell Conditioned Media Extends Survival time of a mouse model of Amyotrophic Lateral Sclerosis

    Get PDF
    Adipose stromal cells (ASC) secrete various trophic factors that assist in the protection of neurons in a variety of neuronal death models. In this study, we tested the effects of human ASC conditional medium (ASC-CM) in human amyotrophic lateral sclerosis (ALS) transgenic mouse model expressing mutant superoxide dismutase (SOD1(G93A)). Treating symptomatic SOD1(G93A) mice with ASC-CM significantly increased post-onset survival time and lifespan. Moreover, SOD1(G93A) mice given ASC-CM treatment showed high motor neuron counts, less activation of microglia and astrocytes at an early symptomatic stage in the spinal cords under immunohistochemical analysis. SOD1(G93A) mice treated with ASC-CM for 7 days showed reduced levels of phosphorylated p38 (pp38) in the spinal cord, a mitogen-activated protein kinase that is involved in both inflammation and neuronal death. Additionally, the levels of α-II spectrin in spinal cords were also inhibited in SOD1(G93A) mice treated with ASC-CM for 3 days. Interestingly, nerve growth factor (NGF), a neurotrophic factor found in ASC-CM, played a significant role in the protection of neurodegeneration inSOD1(G93A) mouse. These results indicate that ASC-CM has the potential to develop into a novel and effective therapeutic treatment for ALS

    Validation of the triple timed up‐and‐go test in Lambert‐Eaton myasthenia

    Get PDF
    Introduction There are no validated, practical, and quantitative measures of disease severity in Lambert‐Eaton myasthenia (LEM). Methods Data from the Effectiveness of 3,4‐Diaminopyridine in Lambert‐Eaton Myasthenic Syndrome (DAPPER) trial were analyzed to assess triple timed up‐and‐go (3TUG) reproducibility and relationships between 3TUG times and other measures of LEM severity. Results The coverage probability technique showed ≥0.90 probability for an acceptable 3TUG difference of ≤0.2, indicating that it is reproducible in LEM patients. The correlation between 3TUG times and lower extremity function scores was significant in subjects who continued and in those who were withdrawn from 3,4‐diaminopyridine free base. Worsening patient‐reported Weakness Self‐Assessment Scale and Investigator Assessment of Treatment Effect scores corresponded with prolongation of 3TUG times. Discussion The 3TUG is reproducible, demonstrates construct validity for assessment of lower extremity function in LEM patients, and correlates with changes in patient and physician assessments. These findings, along with prior reliability studies, indicate 3TUG is a valid measure of disease severity in LEM

    3,4-Diaminopyridine Base Effectively Treats the Weakness of Lambert-Eaton Myasthenia

    Get PDF
    Introduction: 3,4-diaminopyridine has been used to treat Lambert Eaton myasthenia (LEM) for thirty years despite the lack of conclusive evidence of efficacy. Methods: We conducted a randomized double-blind placebo-controlled withdrawal study in LEM patients who had been on stable regimens of 3,4-diaminopyridine base (3,4-DAP) for ≥ 3 months. The primary efficacy endpoint was >30% deterioration in Triple Timed Up-and-Go (3TUG) times during tapered drug withdrawal. The secondary endpoint was self-assessment of LEM–related weakness (W-SAS). Results: 32 participants were randomized to continuous 3,4-DAP or placebo. None of the 14 receiving continuous 3,4-DAP had >30% deterioration in 3TUG time vs 72% of the 18 who tapered to placebo (p<0.0001). W-SAS similarly demonstrated an advantage for continuous treatment over placebo (p<0.0001). Need for rescue and adverse events were more common in the placebo group. Discussion: This trial provides significant evidence of efficacy of 3,4-DAP in the maintenance of strength in LEM

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore