63 research outputs found

    Development of cancer surveillance guidelines in ataxia telangiectasia: A Delphi-based consensus survey of international experts

    Get PDF
    Ataxia telangiectasia; Cancer predisposition; International surveyAtĂ xia telangiectĂ sia; PredisposiciĂł al cĂ ncer; Enquesta internacionalAtaxia telangiectasia; PredisposiciĂłn al cĂĄncer; Encuesta internacionalBackground/Objectives Ataxia telangiectasia (A-T) is a multiorgan disorder with increased vulnerability to cancer. Despite this increased cancer risk, there are no widely accepted guidelines for cancer surveillance in people affected by A-T. We aimed to understand the current international practice regarding cancer surveillance in A-T and agreed-upon approaches to develop cancer surveillance in A-T. Design/Methods We used a consensus development method, the e-Delphi technique, comprising three rounds. Round 1 consisted of a Delphi questionnaire and a survey that collected the details of respondents' professional background, experience, and current practice of cancer surveillance in A-T. Rounds 2 and 3 were designed based on previous rounds and modified according to the comments made by the panellists. The pre-specified consensus threshold was ≄75% agreement. Results Thirty-five expert panellists from 13 countries completed the study. The survey indicated that the current practice of cancer surveillance varies widely between experts and centres'. Consensus was reached that evidence-based guidelines are needed for cancer surveillance in people with A-T, with separate recommendations for adults and children. Statements relating to the tests that should be included, the age for starting and stopping cancer surveillance and the optimal surveillance interval were also agreed upon, although in some areas, the consensus was that further research is needed. Conclusion The international expert consensus statement confirms the need for evidence-based cancer surveillance guidelines in A-T, highlights key features that the guidelines should include, and identifies areas of uncertainty in the expert community. This elucidates current knowledge gaps and will inform the design of future clinical trials.This study is funded by a grant from Action for A-T (ref. 20NOT05). Renata Neves is supported by a Doctoral Fellowship awarded by the College of Radiographers (ref. DF021). This study is supported by the National Institute for Health Research (NIHR) Applied Research Collaboration East Midlands (ARC EM). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care

    Antifungal stewardship in a tertiary care paediatric hospital : the PROAFUNGI study

    Get PDF
    The increasing use of antifungal drugs (AF) in children and the concern for related adverse events and costs has led to the development of specific AF stewardship programmes (AFS). Studies in adult patients have shown improvements in AF prescription and usage after implementation, but paediatric data are scant. The aim of this PROAFUNGI study was to describe the use and appropriateness of AF in a high complexity paediatric centre. Observational, prospective, single-centre, modified point-prevalence study (11 surveys, July-October 2018), including paediatric (< 18 years) patients receiving at least one systemic AF. Prescriptions were evaluated by the AFS team. The study included 119 prescriptions in 55 patients (53% males, median age 8.7 years [IQR 2.4-13.8]). The main underlying condition was cancer (45.5% of patients; HSCT in 60% of them); and the first indication for AF was prophylaxis (75 prescriptions, 63.2%). Liposomal amphotericin B was used most commonly (46% prescriptions), mainly as prophylaxis (75%). Among the 219 evaluations, 195 (89%) were considered optimal. The reason for non-optimal prescriptions was mostly lack of indication (14/24), especially in critical patients with ventricular assist devices. The use of AF without paediatric approval accounted for 8/24 inappropriate prescriptions. A high rate of AF appropriateness was found for the children's hospital as a whole, in relation with a well-established AFS. Nonetheless, the identification of specific areas of improvement should guide future actions of the AFS team, which will focus mainly on prophylaxis in critically ill patients receiving circulatory assistance and the use of non-approved drugs in children

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Get PDF
    COVID-19; Immunodeficiency; Infectious diseaseCOVID-19; Inmunodeficiencia; Enfermedad infecciosaCOVID-19; ImmunodeficiĂšncia; Malaltia infecciosaWe found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-ÎČ in two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7–9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6 [1.2–5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6–35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1–9.6]) of IFN-ω and/or IFN-α2.The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI088364, R01AI163029, and R21AI160576), the National Center for Advancing Translational Sciences, the NIH Clinical and Translational Science Award program (UL1TR001866), the Fisher Center for Alzheimer’s Research Foundation, the Meyer Foundation, the JPB Foundation, the Stavros Niarchos Foundation Institute for Global Infectious Disease Research, the program “Investissement d’Avenir” launched by the French Government and implemented by the Agence Nationale de la Recherche (ANR) (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003), ANR AI2D (ANR-22-CE15-0046), and ANR AAILC (ANR-21-LIBA-0002) projects, the European Union’s Horizon 2020 research and innovation program under grant agreement no. 824110 (EASI-genomics), the HORIZON-HLTH-2021-DISEASE-04 program under grant agreement 01057100 (UNDINE), the ANR-RHU COVIFERON Program (ANR-21-RHUS-08), the Square Foundation, Grandir - Fonds de solidaritĂ© pour l’enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, The French Ministry of Higher Education, Research, and Innovation (MESRI-COVID-19), Institut National de la SantĂ© et de la Recherche MĂ©dicale (INSERM), REACTing-INSERM, the University of Paris CitĂ© and Imagine Institute, Battersea & Bowery Advisory Group, and William E. Ford, General Atlantic’s Chairman and Chief Executive Officer, Gabriel Caillaux, General Atlantic’s Co-President, Managing Director and Head of Business in EMEA, and the General Atlantic Foundation. I. Meyts is a senior clinical researcher at FWO Vlaanderen; I. Meyts is funded by the European Research Council under HORIZON-HLTL-2021-ID: 101057100 "Undine," KU Leuven C16/18/007, and FWO grant G0B5120N (DADA2). L.D. Notarangelo and H.C. Su (members of the COVID Human Genetic Effort) were supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH. P. Bastard was supported by the French Foundation for Medical Research (FRM, EA20170638020). P. Bastard and T. Le Voyer were supported by the MD-PhD program of the Imagine Institute (with the support of the Fondation Bettencourt-Schueller). P. Bastard was supported by the “Poste CCA-INSERM-Bettencourt” (with the support of the Fondation Bettencourt-Schueller). S. Okada was supported by MEXT/JSPS KAKENHI (grant numbers 22H03041 and 22KK0113) and AMED (grant numbers JP21fk0108436 and JP22fk0108514). L.I. Gonzalez-Granado is supported by the Instituto de Salud Carlos III (ISCIII) through the project FIS-PI21/01642 and cofunded by the European Union. D.C. Vinh is supported by a Fonds de Recherche du QuĂ©bec - SantĂ©, Senior Clinician-Scientist scholar award. Q. Pan-Hammarström was funded by the Swedish Research Council, and the Knut and Alice Wallenberg Foundation. K. Kisand’s laboratory was funded by the Estonian Research Council grants PRG1117 and PRG1428. This study also received support from ISCIII (TRINEO: PI22/00162; DIAVIR: DTS19/00049; Resvi-Omics: PI19/01039 [A. Salas]; ReSVinext: PI16/01569 [F. MartinĂłn-Torres]; Enterogen: PI19/01090 [F. MartinĂłn-Torres]); OMI-COVI-VAC (PI22/00406 [F. MartinĂłn-Torres] jointly financed by FEDER), GAIN: Grupos con Potencial de Crecimiento (IN607B 2020/08 [A. Salas]); ACIS: BI-BACVIR (PRIS-3 [A. Salas]), and CovidPhy (SA 304 C [A. Salas]); and consorcio Centro de InvestigaciĂłn BiomĂ©dica en Red de Enfermedades Respiratorias (CB21/06/00103; F. MartinĂłn-Torres); GEN-COVID (IN845D 2020/23, F. MartinĂłn-Torres) and Grupos de Referencia Competitiva (IIN607A2021/05, F. MartinĂłn-Torres). The study was funded by ISCIII (COV20_01333, COV20_01334, PI16/00759, PI18/00223, PI19/00208, PI20/00876, and PI21/00211), the Spanish Ministry of Science and Innovation (RTC-2017-6471-1; AEI/FEDER, EU), the FundaciĂłn Canaria Instituto de InvestigaciĂłn Sanitaria de Canarias (FIISC19/43, PIFIISC22/27), Grupo DISA (OA18/017), FundaciĂłn MAPFRE Guanarteme (OA21/131), Cabildo Insular de Tenerife (CGIEU0000219140 and “Apuestas cientĂ­ficas del ITER para colaborar en la lucha contra la COVID-19”). A. Pujol is supported by ACCI20-759 CIBERER, H2020 MaratĂł TV3 COVID 2021-31-33, the HORIZON-HLTH-2021-ID: 101057100 (UNDINE), the Horizon 2020 program under grant no. 824110 (EasiGenomics grant no. COVID-19/PID12342), and the CERCA Program/Generalitat de Catalunya. This research is supported by the European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases. Open Access funding provided by Rockefeller University

    Novel frameshift variants expand the map of the genetic defects in IRF2BP2

    Get PDF
    BackgroundAt present, the knowledge about disease-causing mutations in IRF2BP2 is very limited because only a few patients affected by this condition have been reported. As previous studies have described, the haploinsufficiency of this interferon transcriptional corepressors leads to the development of CVID. Very recently, a more accurate phenotype produced by truncating variants in this gene has been defined, manifesting CVID with gastrointestinal inflammatory symptoms and autoimmune manifestations.MethodsWe analyzed 5 index cases with suspected primary immunodeficiency by high throughput sequencing. They were submitted for a genetic test with a panel of genes associated with immune system diseases, including IRF2BP2. The screening of SNVs, indels and CNVs fulfilling the criteria with very low allelic frequency and high protein impact, revealed five novel variants in IRF2BP2. In addition, we isolated both wild-type and mutated allele of the cDNA from one of the families.ResultsIn this study, we report five novel loss-of-function (LoF) mutations in IRF2BP2 that likely cause primary immunodeficiency, with CVID as more frequent phenotype, variable expression of inflammatory gastrointestinal features, and one patient with predisposition of viral infection. All identified variants were frameshift changes, and one of them was a large deletion located on chromosome 1q42, which includes the whole sequence of IRF2BP2, among other genes. Both de novo and dominant modes of inheritance were observed in the families here presented, as well as incomplete penetrance.ConclusionsWe describe novel variants in a delimited low-complex region, which may be considered a hotspot in IRF2BP2. Moreover, this is the first time that a large CNV in IRF2BP2 has been reported to cause CVID. The distinct mechanisms than LoF in IRF2BP2 could cause different phenotype compared with the mainly described. Further investigations are necessary to comprehend the regulatory mechanisms of IRF2BP2, which could be under variable expression of the disease

    Primary immunodeficiency associated with chromosomal aberration - an ESID survey

    Get PDF
    Background: Patients with syndromic features frequently suffer from recurrent respiratory infections, but little is known about the spectrum of immunological abnormalities associated with their underlying chromosomal aberrations outside the well-known examples of Down and DiGeorge syndromes. Therefore, we performed this retrospective, observational survey study. Methods: All members of the European Society for Immunodeficiencies (ESID) were invited to participate by reporting their patients with chromosomal aberration (excluding Down and DiGeorge syndromes) in combination with one or more identified immunological abnormalities potentially relating to primary immunodeficiency. An online questionnaire was used to collect the patient data. Results: Forty-six patients were included from 16 centers (24 males, 22 females; median age 10.4 years [range 1.0-69. 2 years]; 36 pediatric, 10 adult patients). A variety of chromosomal aberrations associated with immunological abnormalities potentially relating to primary immune deficiency was reported. The most important clinical presentation prompting the immunological evaluation was 'recurrent ear-nose-throat (ENT) and airway infections'. Immunoglobulin isotype and/or IgG-subclass deficiencies were the most prevalent immunological abnormalities reported. Conclusions: Our survey yielded a wide variety of chromosomal aberrations associated with immunological abnormalities potentially relating to primary immunodeficiency. Although respiratory tract infections can often also be ascribed to other causes (e.g. aspiration or structural abnormalities), we show that a significant proportion of patients also have an antibody deficiency requiring specific treatment (e.g. immunoglobulin replacement, antibiotic prophylaxis). Therefore, it is important to perform immunological investigations in patients with chromosomal aberrations and recurrent ENT or airway infections, to identify potential immunodeficiency that can be specifically treated.Peer reviewe

    The Incidence of AIDS-Defining Illnesses at a Current CD4 Count ≄200 Cells/”L in the Post-Combination Antiretroviral Therapy Era

    Get PDF
    The incidence of AIDS was higher in patients with a current CD4 count of 500-749 cells/”L compared to 750-999 cells/”L, but did not decrease further at higher CD4 levels. Results were similar in those virologically suppressed on combination antiretroviral therapy, suggesting immune reconstitution is incomplete until CD4 >750/”

    AP1S3 Mutations Cause Skin Autoinflammation by Disrupting Keratinocyte Autophagy and Up-Regulating IL-36 Production

    Get PDF
    Prominent skin involvement is a defining characteristic of autoinflammatory disorders caused by abnormal IL-1 signaling. However, the pathways and cell types that drive cutaneous autoinflammatory features remain poorly understood. We sought to address this issue by investigating the pathogenesis of pustular psoriasis, a model of autoinflammatory disorders with predominant cutaneous manifestations. We specifically characterized the impact of mutations affecting AP1S3, a disease gene previously identified by our group and validated here in a newly ascertained patient resource. We first showed that AP1S3 expression is distinctively elevated in keratinocytes. Because AP1S3 encodes a protein implicated in autophagosome formation, we next investigated the effects of gene silencing on this pathway. We found that AP1S3 knockout disrupts keratinocyte autophagy, causing abnormal accumulation of p62, an adaptor protein mediating NF-kappa B activation. We showed that as a consequence, AP1S3-deficient cells up-regulate IL-1 signaling and overexpress IL-36 alpha, a cytokine that is emerging as an important mediator of skin inflammation. These abnormal immune profiles were recapitulated by pharmacological inhibition of autophagy and verified in patient keratinocytes, where they were reversed by IL-36 blockade. These findings show that keratinocytes play a key role in skin autoinflammation and identify autophagy modulation of IL-36 signaling as a therapeutic target.Peer reviewe

    Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase ÎŽ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase ÎŽ Syndrome Registry

    Get PDF
    Activated phosphoinositide 3-kinase (PI3K) ή Syndrome (APDS), caused by autosomal dominant mutations in PIK3CD (APDS1) or PIK3R1 (APDS2), is a heterogeneous primary immunodeficiency. While initial cohort-descriptions summarized the spectrum of clinical and immunological manifestations, questions about long-term disease evolution and response to therapy remain. The prospective European Society for Immunodeficiencies (ESID)-APDS registry aims to characterize the disease course, identify outcome predictors, and evaluate treatment responses. So far, 77 patients have been recruited (51 APDS1, 26 APDS2). Analysis of disease evolution in the first 68 patients pinpoints the early occurrence of recurrent respiratory infections followed by chronic lymphoproliferation, gastrointestinal manifestations, and cytopenias. Although most manifestations occur by age 15, adult-onset and asymptomatic courses were documented. Bronchiectasis was observed in 24/40 APDS1 patients who received a CT-scan compared with 4/15 APDS2 patients. By age 20, half of the patients had received at least one immunosuppressant, but 2–3 lines of immunosuppressive therapy were not unusual before age 10. Response to rapamycin was rated by physician visual analog scale as good in 10, moderate in 9, and poor in 7. Lymphoproliferation showed the best response (8 complete, 11 partial, 6 no remission), while bowel inflammation (3 complete, 3 partial, 9 no remission) and cytopenia (3 complete, 2 partial, 9 no remission) responded less well. Hence, non-lymphoproliferative manifestations should be a key target for novel therapies. This report from the ESID-APDS registry provides comprehensive baseline documentation for a growing cohort that will be followed prospectively to establish prognostic factors and identify patients for treatment studies

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Full text link
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    Get PDF
    Publisher Copyright: © 2021 The Authors, some rights reserved.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-alpha and/or IFN-omega are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-alpha and/or IFN-omega (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-beta. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-alpha and/or IFN-omega are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-beta do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Peer reviewe
    • 

    corecore