612 research outputs found
The utilisation of health research in policy-making: Concepts, examples and methods of assessment
The importance of health research utilisation in policy-making, and of understanding the
mechanisms involved, is increasingly recognised. Recent reports calling for more resources to
improve health in developing countries, and global pressures for accountability, draw greater
attention to research-informed policy-making. Key utilisation issues have been described for at
least twenty years, but the growing focus on health research systems creates additional dimensions.
The utilisation of health research in policy-making should contribute to policies that may eventually
lead to desired outcomes, including health gains. In this article, exploration of these issues is
combined with a review of various forms of policy-making. When this is linked to analysis of
different types of health research, it assists in building a comprehensive account of the diverse
meanings of research utilisation.
Previous studies report methods and conceptual frameworks that have been applied, if with varying
degrees of success, to record utilisation in policy-making. These studies reveal various examples of
research impact within a general picture of underutilisation.
Factors potentially enhancing utilisation can be identified by exploration of: priority setting;
activities of the health research system at the interface between research and policy-making; and
the role of the recipients, or 'receptors', of health research. An interfaces and receptors model
provides a framework for analysis.
Recommendations about possible methods for assessing health research utilisation follow
identification of the purposes of such assessments. Our conclusion is that research utilisation can
be better understood, and enhanced, by developing assessment methods informed by conceptual
analysis and review of previous studies
Adaptation of mammalian host-pathogen interactions in a changing arctic environment
Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host biology is regulated in part by highly synchronized temperature and photoperiod changes during seasonal transitions (e.g., freezeup and breakup). With a warming climate, only one of these key biological cues will undergo drastic changes, while the other will remain fixed. This uncoupling can theoretically have drastic consequences on host-pathogen interactions. These poorly understood cues together with a changing climate by itself will challenge host populations that are adapted to pathogens under the historic and current climate regime. We will review adaptations of both host and pathogens to the extreme conditions at high latitudes and explore some potential consequences of rapid changes in the Arctic
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
The complete genome sequence and genetic analysis of ΦCA82 a novel uncultured microphage from the turkey gastrointestinal system
The genomic DNA sequence of a novel enteric uncultured microphage, ΦCA82 from a turkey gastrointestinal system was determined utilizing metagenomics techniques. The entire circular, single-stranded nucleotide sequence of the genome was 5,514 nucleotides. The ΦCA82 genome is quite different from other microviruses as indicated by comparisons of nucleotide similarity, predicted protein similarity, and functional classifications. Only three genes showed significant similarity to microviral proteins as determined by local alignments using BLAST analysis. ORF1 encoded a predicted phage F capsid protein that was phylogenetically most similar to the Microviridae ΦMH2K member's major coat protein. The ΦCA82 genome also encoded a predicted minor capsid protein (ORF2) and putative replication initiation protein (ORF3) most similar to the microviral bacteriophage SpV4. The distant evolutionary relationship of ΦCA82 suggests that the divergence of this novel turkey microvirus from other microviruses may reflect unique evolutionary pressures encountered within the turkey gastrointestinal system
Systematic identification of conserved motif modules in the human genome
<p>Abstract</p> <p>Background</p> <p>The identification of motif modules, groups of multiple motifs frequently occurring in DNA sequences, is one of the most important tasks necessary for annotating the human genome. Current approaches to identifying motif modules are often restricted to searches within promoter regions or rely on multiple genome alignments. However, the promoter regions only account for a limited number of locations where transcription factor binding sites can occur, and multiple genome alignments often cannot align binding sites with their true counterparts because of the short and degenerative nature of these transcription factor binding sites.</p> <p>Results</p> <p>To identify motif modules systematically, we developed a computational method for the entire non-coding regions around human genes that does not rely upon the use of multiple genome alignments. First, we selected orthologous DNA blocks approximately 1-kilobase in length based on discontiguous sequence similarity. Next, we scanned the conserved segments in these blocks using known motifs in the TRANSFAC database. Finally, a frequent pattern mining technique was applied to identify motif modules within these blocks. In total, with a false discovery rate cutoff of 0.05, we predicted 3,161,839 motif modules, 90.8% of which are supported by various forms of functional evidence. Compared with experimental data from 14 ChIP-seq experiments, on average, our methods predicted 69.6% of the ChIP-seq peaks with TFBSs of multiple TFs. Our findings also show that many motif modules have distance preference and order preference among the motifs, which further supports the functionality of these predictions.</p> <p>Conclusions</p> <p>Our work provides a large-scale prediction of motif modules in mammals, which will facilitate the understanding of gene regulation in a systematic way.</p
Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: Varying the number of double-stranded RNA binding domains and lineage-specific duplications
BackgroundDouble-stranded (ds) RNA, generated during viral infection, binds and activates the mammalian anti-viral protein kinase PKR, which phosphorylates the translation initiation factor eIF2alpha leading to the general inhibition of protein synthesis. Although PKR-like activity has been described in fish cells, the responsible enzymes eluded molecular characterization until the recent discovery of goldfish and zebrafish PKZ, which contain Z-DNA-binding domains instead of dsRNA-binding domains (dsRBDs). Fish and amphibian PKR genes have not been described so far.ResultsHere we report the cloning and identification of 13 PKR genes from 8 teleost fish and amphibian species, including zebrafish, demonstrating the coexistence of PKR and PKZ in this latter species. Analyses of their genomic organization revealed up to three tandemly arrayed PKR genes, which are arranged in head-to-tail orientation. At least five duplications occurred independently in fish and amphibian lineages. Phylogenetic analyses reveal that the kinase domains of fish PKR genes are more closely related to those of fish PKZ than to the PKR kinase domains of other vertebrate species. The duplication leading to fish PKR and PKZ genes occurred early during teleost fish evolution after the divergence of the tetrapod lineage. While two dsRBDs are found in mammalian and amphibian PKR, one, two or three dsRBDs are present in fish PKR. In zebrafish, both PKR and PKZ were strongly upregulated after immunostimulation with some tissue-specific expression differences. Using genetic and biochemical assays we demonstrate that both zebrafish PKR and PKZ can phosphorylate eIF2alpha in yeast.ConclusionConsidering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both dsRNA and Z-DNA/RNA, and perhaps by altering sensitivity to viral PKR inhibitors. Further implications of our findings for the evolution of the PKR family and for studying PKR/PKZ interactions with viral gene products and their roles in viral infections are discussed
Sodium Chloride Inhibits the Growth and Infective Capacity of the Amphibian Chytrid Fungus and Increases Host Survival Rates
The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0–5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1–4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation
- …