736 research outputs found

    Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons

    Full text link
    One of the most remarkable results of quantum mechanics is the fact that many-body quantum systems may exhibit phase transitions even at zero temperature. Quantum fluctuations, deeply rooted in Heisenberg's uncertainty principle, and not thermal fluctuations, drive the system from one phase to another. Typically, the relative strength of two competing terms in the system's Hamiltonian is changed across a finite critical value. A well-known example is the Mott-Hubbard quantum phase transition from a superfluid to an insulating phase, which has been observed for weakly interacting bosonic atomic gases. However, for strongly interacting quantum systems confined to lower-dimensional geometry a novel type of quantum phase transition may be induced for which an arbitrarily weak perturbation to the Hamiltonian is sufficient to drive the transition. Here, for a one-dimensional (1D) quantum gas of bosonic caesium atoms with tunable interactions, we observe the commensurate-incommensurate quantum phase transition from a superfluid Luttinger liquid to a Mott-insulator. For sufficiently strong interactions, the transition is induced by adding an arbitrarily weak optical lattice commensurate with the atomic granularity, which leads to immediate pinning of the atoms. We map out the phase diagram and find that our measurements in the strongly interacting regime agree well with a quantum field description based on the exactly solvable sine-Gordon model. We trace the phase boundary all the way to the weakly interacting regime where we find good agreement with the predictions of the 1D Bose-Hubbard model. Our results open up the experimental study of quantum phase transitions, criticality, and transport phenomena beyond Hubbard-type models in the context of ultracold gases

    Women's Experiences and Views about Costs of Seeking Malaria Chemoprevention and other Antenatal Services: A Qualitative Study from two Districts in Rural Tanzania.

    Get PDF
    The Tanzanian government recommends women who attend antenatal care (ANC) clinics to accept receiving intermittent preventive treatment against malaria during pregnancy (IPTp) and vouchers for insecticide-treated nets (ITNs) at subsidized prices. Little emphasis has been paid to investigate the ability of pregnant women to access and effectively utilize these services. To describe the experience and perceptions of pregnant women about costs and cost barriers for accessing ANC services with emphasis on IPTp in rural Tanzania. Qualitative data were collected in the districts of Mufindi in Iringa Region and Mkuranga in Coast Region through 1) focus group discussions (FGDs) with pregnant women and mothers to infants and 2) exit-interviews with pregnant women identified at ANC clinics. Data were analyzed manually using qualitative content analysis methodology. FGD participants and interview respondents identified the following key limiting factors for women's use of ANC services: 1) costs in terms of money and time associated with accessing ANC clinics, 2) the presence of more or less official user-fees for some services within the ANC package, and 3) service providers' application of fines, penalties and blame when failing to adhere to service schedules. Interestingly, the time associated with travelling long distances to ANC clinics and ITN retailers and with waiting for services at clinic-level was a major factor of discouragement in the health seeking behaviour of pregnant women because it seriously affected their domestic responsibilities. A variety of resource-related factors were shown to affect the health seeking behaviour of pregnant women in rural Tanzania. Thus, accessibility to ANC services was hampered by direct and indirect costs, travel distances and waiting time. Strengthening of user-fee exemption practices and bringing services closer to the users, for example by promoting community-directed control of selected public health services, including IPTp, are urgently needed measures for increasing equity in health services in Tanzania

    Co-producing across organizational boundaries: promoting asylum seeker integration in Scotland

    Get PDF
    This paper questions whether asylum seeker integration is promoted through inter-organisational relationships between non-profit and voluntary organisations (NPVOs) and government agencies. It focuses particularly on the role of NPVOs in service delivery (co-management) and in the delivery and planning of public services (co-governance). It presents a research study on the public services provided to asylum seekers in Glasgow and asks the following questions: What role do NPVOs play in the planning and delivery of public services? When planning and delivering public services, to what extent do NPVOs work across organisational boundaries and what kind of relationships exist? And in practice, what makes inter-organisational relationships work? This paper offers new empirical evidence and also contributes to the theoretical debate around the integration of asylum seekers

    Heat transfer in solar absorber plates with micro-channels

    Get PDF
    Analytical, computational and experimental studies were carried out to investigate heat transfer and fluid flow in micro-channel absorber plates for compact (thin and light-weight) solar thermal collectors. The main objective of the work was to study different design and/or operating scenarios as well as study the significance of various micro-scaling effects. Analytical investigation showed that, under similar conditions, the proposed design yields a much higher fin efficiency, F and collector efficiency factor, F’ compared with the conventional solar collector design. An analytical model combining convective heat transfer in the collector fluid with axial conduction in the metal plate was developed. The predicted plate temperature profiles from the analytical model were in close agreement with the measured profiles. The model further showed that axial thermal conduction can significantly alter the plate temperature profile. Experiments were designed to represent real life operation of the proposed system. A CFD study, using the same design and operating parameters, produced results comparable with experiments. This numerical simulation also gave further insight into the heat transfer and fluid flow patterns in the micro-channel plate. The effect of channel cross section geometry was studied. The Nusselt number was observed to increase as the aspect ratio approached unity. Measured friction factors were similar in trend to the predictions for rectangular channels, although the overall rise in fluid temperature resulted in slightly lower friction factors. Thermal performance reduced slightly with increase in hydraulic diameter. The significance of various scaling effects was also investigated experimentally and numerically. Most of the typical scaling effects such as viscous dissipation and entrance effects were found to be insignificant however, conjugate heat transfer, surface boundary condition, surface finish and measurement uncertainties could be significant. The results showed a Reynolds number dependent Nusselt number which has been attributed to axial thermal conduction. It was also observed that only three walls were transferring heat; the walls of heat transfer had a uniform peripheral temperature while the heat flux varied peripherally. The closest simplified thermal boundary condition to represent heat transfer in these channels is the H1 with three (3) walls transferring heat. Increased surface roughness (obtained by using an etching technique to create the channels) was found to have a detrimental effect on heat transfer. The results showed that thermal improvement can be achieved by increasing the fluid velocity; however, pumping the thermal fluid above a pump power per plate area of 0.3 W/m2 resulted in marginal improvement. In practice, optimum microchannel geometry in plates should be sized based on fluid properties and operating conditions. The micro-channels should also have thin walls to minimise the effects of conjugate heat transfer. A Photovoltaic pump should be installed alongside the collector in order to provide pumping power required and minimise the overall fluid temperature rise. The results are beneficial for the design of micro-channel absorber plates for low heat flux operation up to 1000W/m2

    Phosphomimetic Modulation of eNOS Improves Myocardial Reperfusion and Mimics Cardiac Postconditioning in Mice

    Get PDF
    Objective: Myocardial infarction resulting from ischemia-reperfusion injury can be reduced by cardiac postconditioning, in which blood flow is restored intermittently prior to full reperfusion. Although key molecular mechanisms and prosurvival pathways involved in postconditioning have been identified, a direct role for eNOS-derived NO in improving regional myocardial perfusion has not been shown. The objective of this study is to measure, with high temporal and spatial resolution, regional myocardial perfusion during ischemia-reperfusion and postconditioning, in order to determine the contribution of regional blood flow effects of NO to infarct size and protection. Methods and Results: We used myocardial contrast echocardiography to measure regional myocardial blood flow in mice over time. Reperfusion after myocardial ischemia-reperfusion injury is improved by postconditioning, as well as by phosphomimetic eNOS modulation. Knock-in mice expressing a phosphomimetic S1176D form of eNOS showed improved myocardial reperfusion and significantly reduced infarct size. eNOS knock-out mice failed to show cardioprotection from postconditioning. The size of the no-reflow zone following ischemia-reperfusion is substantially reduced by postconditioning and by the phosphomimetic eNOS mutation. Conclusions and Significance: Using myocardial contrast echocardiography, we show that temporal dynamics of regional myocardial perfusion restoration contribute to reduced infarct size after postconditioning. eNOS has direct effects on myocardial blood flow following ischemia-reperfusion, with reduction in the size of the no-reflow zone. These results have important implications for ongoing clinical trials on cardioprotection, because the degree of protective benefit may be significantly influenced by the regional hemodynamic effects of eNOS-derived NO.American Heart Association (Predoctoral Fellowship)National Institutes of Health (U.S.) (R01 NS33335)National Institutes of Health (U.S.) (R01 HL57818

    Search for the standard model Higgs boson at LEP

    Get PDF

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore