418 research outputs found

    Computational Controversy

    Full text link
    Climate change, vaccination, abortion, Trump: Many topics are surrounded by fierce controversies. The nature of such heated debates and their elements have been studied extensively in the social science literature. More recently, various computational approaches to controversy analysis have appeared, using new data sources such as Wikipedia, which help us now better understand these phenomena. However, compared to what social sciences have discovered about such debates, the existing computational approaches mostly focus on just a few of the many important aspects around the concept of controversies. In order to link the two strands, we provide and evaluate here a controversy model that is both, rooted in the findings of the social science literature and at the same time strongly linked to computational methods. We show how this model can lead to computational controversy analytics that have full coverage over all the crucial aspects that make up a controversy.Comment: In Proceedings of the 9th International Conference on Social Informatics (SocInfo) 201

    Oral Health Status of Patients with Mental Disorders in Southwest Ethiopia

    Get PDF
    BACKGROUND: Psychiatric disorders are known to be a risk factor for the development of different oral health problems especially for dental caries and periodontal diseases. In spite of this fact, no study has been conducted to reveal its magnitude in Ethiopia. Hence, this study was conducted to determine the oral health status of psychiatric patients at Jimma University Specialized Hospital (JUSH), Psychiatric Clinic. METHODS: A hospital based cross- sectional study was used from January to May 2011. A total of 240 participants were included in the study. Dental examination was done to measure indices of oral health: decayed, missing, and filled teeth (DMFT) index and community periodontal index (CPI). Oral examination was performed using mirror, probe and explorer by experienced dental doctors. A simple random sampling technique was implemented to collect data. ANOVA test, binary logistic and multinomial logistic regression analyses were done using SPSS 16.0 statistical software. RESULTS: The mean DMFT score among the psychiatric patients was 1.94 ± 2.12 (mean ± SD) with 1.28 ± 1.69, 0.51 ± 1.19 and 0.14 ± 0.48 (mean ± SD) for decayed, missed and filled teeth respectively. Only about 24% of the psychiatric patients had a healthy CPI score. Incorrect tooth brushing technique was significantly associated with a DMFT score greater than 2 (AOR = 3.58; 95% CI: 1.65, 7.79). The habit of sweet intake was also associated with dental caries (AOR = 2.91; 95% CI: 1.43, 5.95). Similarly, patients with a smoking habit also demonstrated statistically significant association with dental caries (AOR = 18.98; 95% CI: 5.06, 71.24). CONCLUSION: The oral health status of the psychiatric patients was poor. Thus, health education about oral hygiene should be given for psychiatric patients so they can avoid the frequent intake of sweets, smoking and learn correct tooth brushing technique

    Identification of the Sex Pheromone of a Protected Species, the Spanish Moon Moth Graellsia isabellae

    Get PDF
    Sex attractant pheromones are highly sensitive and selective tools for detecting and monitoring populations of insects, yet there has been only one reported case of pheromones being used to monitor protected species. Here, we report the identification and synthesis of the sex pheromone of a protected European moth species, Graellsia isabellae (Lepidoptera: Saturniidae), as the single component, (4E,6E,11Z)-hexadecatrienal. In preliminary field trials, lures loaded with this compound attracted male moths from populations of this species at a number of widely separated field sites in France, Switzerland, and Spain, clearly demonstrating the utility of pheromones in sampling potentially endangered insect species

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    The Human Gonadotropin Releasing Hormone Type I Receptor Is a Functional Intracellular GPCR Expressed on the Nuclear Membrane

    Get PDF
    The mammalian type I gonadotropin releasing hormone receptor (GnRH-R) is a structurally unique G protein-coupled receptor (GPCR) that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME). Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER) leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS) in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The Functional Interplay between Protein Kinase CK2 and CCA1 Transcriptional Activity Is Essential for Clock Temperature Compensation in Arabidopsis

    Get PDF
    Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double–ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1). CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2) are essential for clock temperature compensation in Arabidopsis

    Genetic Background Analysis of Protein C Deficiency Demonstrates a Recurrent Mutation Associated with Venous Thrombosis in Chinese Population

    Get PDF
    Background: Protein C (PC) is one of the most important physiological inhibitors of coagulation proteases. Hereditary PC deficiency causes a predisposition to venous thrombosis (VT). The genetic characteristics of PC deficiency in the Chinese population remain unknown. Methods: Thirty-four unrelated probands diagnosed with hereditary PC deficiency were investigated. PC activity and antigen levels were measured. Mutation analysis was performed by sequencing the PROC gene. In silico analyses, including PolyPhen-2, SIFT, multiple sequence alignment, splicing prediction, and protein molecular modeling were performed to predict the consequences of each variant identified. One recurrent mutation and its relative risk for thrombosis in relatives were analyzed in 11 families. The recurrent mutation was subsequently detected in a case (VT patients)-control study, and the adjusted odds ratio (OR) for VT risk was calculated by logistic regression analysis. Results: A total of 18 different mutations, including 12 novel variants, were identified. One common mutation, PROC c.565C.T (rs146922325:C.T), was found in 17 of the 34 probands. The family study showed that first-degree relatives bearing this variant had an 8.8-fold (95%CI = 1.1–71.6) increased risk of venous thrombosis. The case-control (1003 vs. 1031) study identified this mutation in 5.88 % patients and in 0.87 % controls, respectively. The mutant allele conferred a high predisposition to venous thrombosis (adjusted OR = 7.34, 95%CI = 3.61–14.94). The plasma PC activity and antigen levels i

    Gibberellin Acts through Jasmonate to Control the Expression of MYB21, MYB24, and MYB57 to Promote Stamen Filament Growth in Arabidopsis

    Get PDF
    Precise coordination between stamen and pistil development is essential to make a fertile flower. Mutations impairing stamen filament elongation, pollen maturation, or anther dehiscence will cause male sterility. Deficiency in plant hormone gibberellin (GA) causes male sterility due to accumulation of DELLA proteins, and GA triggers DELLA degradation to promote stamen development. Deficiency in plant hormone jasmonate (JA) also causes male sterility. However, little is known about the relationship between GA and JA in controlling stamen development. Here, we show that MYB21, MYB24, and MYB57 are GA-dependent stamen-enriched genes. Loss-of-function of two DELLAs RGA and RGL2 restores the expression of these three MYB genes together with restoration of stamen filament growth in GA-deficient plants. Genetic analysis showed that the myb21-t1 myb24-t1 myb57-t1 triple mutant confers a short stamen phenotype leading to male sterility. Further genetic and molecular studies demonstrate that GA suppresses DELLAs to mobilize the expression of the key JA biosynthesis gene DAD1, and this is consistent with the observation that the JA content in the young flower buds of the GA-deficient quadruple mutant ga1-3 gai-t6 rga-t2 rgl1-1 is much lower than that in the WT. We conclude that GA promotes JA biosynthesis to control the expression of MYB21, MYB24, and MYB57. Therefore, we have established a hierarchical relationship between GA and JA in that modulation of JA pathway by GA is one of the prerequisites for GA to regulate the normal stamen development in Arabidopsis
    corecore