1,523 research outputs found

    Encountered Problems and Outcome Status in Nascent Entrepreneurship

    Get PDF
    The relationship is investigated between outcome status and encountered problems in the business start-up process. Contrary to expectations, we find that starters do not differ from quitters in number and type of problems encountered, and that problems encountered generally do not affect outcome status. This Dutch research uses a design that is comparable to the U.S. PSED (Panel Study of Entrepreneurial Dynamics) in which a sample of 414 nascent entrepreneurs were followed over a three year period.encountered-problems;nascent-entrepreneurship;outcome-status

    Encountered Problems and Outcome Status in Nascent Entrepreneurship

    Get PDF
    The relationship is investigated between outcome status and encountered problems in the business start-up process. Contrary to expectations, we find that starters do not differ from quitters in number and type of problems encountered, and that problems encountered generally do not affect outcome status. This Dutch research uses a design that is comparable to the U.S. PSED (Panel Study of Entrepreneurial Dynamics) in which a sample of 414 nascent entrepreneurs were followed over a three year period

    An evaluation of the relative efficacy of an open airway, an oxygen reservoir and continuous positive airway pressure 5 cmH2O on the non-ventilated lung

    Get PDF
    Publisher's copy made available with the permission of the publisher © Australian Society of AnaesthetistsThe aim of this study, during one-lung ventilation, was to evaluate if oxygenation could be improved by use of a simple oxygen reservoir or application of 5 cmH2O continuous positive airway pressure (CPAP) to the non-ventilated lung compared with an open airway. Twenty-three patients with lung malignancy, undergoing thoracotomy requiring at least 60 minutes of one-lung ventilation before lung lobe excision, were studied. After routine induction and establishment of one-lung ventilation, the three treatments were applied in turn to the same patient in a sequence selected randomly. The first treatment was repeated as a fourth treatment and these results of the repeated treatment averaged to minimize the effect of slow changes. Arterial oxygenation was measured by an arterial blood gas 15 minutes after the application of each treatment. Twenty patients completed the study. Mean PaO2 (in mmHg) was 210.3 (SD 105.5) in the 'OPEN' treatment, 186.0 (SD 109.2) in the 'RESERVOIR' treatment, and 240.5 (SD 116.0) in the 'CPAP' treatment. This overall difference was not quite significant (P=0.058, paired ANOVA), but comparison of the pairs showed that there was a significant better oxygenation only with the CPAP compared to the reservoir treatments (t=2.52, P=0.021). While the effect on the surgical field was not apparent in most patients, in one patient surgery was impeded during CPAP. Our results show that the use of a reservoir does not give oxygenation better than an open tube, and is less effective than the use of CPAP 5 cmH2O on the non-ventilated lung during one-lung ventilation.J. Slimani, W. J. Russell, C. Jurisevichttp://www.aaic.net.au/Article.asp?D=200404

    A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems

    Get PDF
    A crossed compound parabolic concentrator (CCPC) is applied into a photovoltaic/thermal (PV/T) hybrid solar collector, i.e. concentrating PV/T (CPV/T) collector, to develop new hybrid roof-top CPV/T systems. However, to optimise the system configuration and operational parameters as well as to predict their performances, a coupled optical, thermal and electrical model is essential. We establish this model by integrating a number of submodels sourced from literature as well as from our recent work on incidence-dependent optical efficiency, six-parameter electrical model and scaling law for outdoor conditions. With the model, electrical performance and cell temperature are predicted on specific days for the roof-top systems installed in Glasgow, Penryn and Jaen. Results obtained by the proposed model reasonably agree with monitored data and it is also clarified that the systems operate under off-optimal operating condition. Long-term electric performance of the CPV/T systems is estimated as well. In addition, effects of transient terms in heat transfer and diffuse solar irradiance on electric energy are identified and discussed

    Hot-Wire Measurements of the Influence of Surface Steps on Transition in Favorable Pressure Gradient Boundary Layers

    Get PDF
    An examination of the effects of surface step excrescences on boundary layer transition was performed, using a unique experimental facility. The objective of the work was to characterize the variation of transition Reynolds numbers with measurable step size and boundary layer parameters, with the specific goal of specifying new tolerance criteria for laminar flow airfoils, alongside a fundamental investigation of boundary layer transition mechanisms. This paper focuses on interpretation of hot-wire measurements, including supporting stability calculations, undertaken as part of the study. The results for both forward and aft-facing steps indicated a substantial stabilizing effect of favorable pressure gradient on excrescence-induced boundary layer transition. These findings suggest that manufacturing tolerances for laminar flow aircraft could be loosened in areas where even mild favorable pressure gradients exist

    Top A_FB at the Tevatron vs. charge asymmetry at the LHC in chiral U(1) flavor models with flavored Higgs doublets

    Full text link
    We consider the top forward-backward (FB) asymmetry at the Tevatron and top charge asymmetry at the LHC within chiral U(1)^\prime models with flavor-dependent U(1)^\prime charges and flavored Higgs fields, which were introduced in the ref. [65]. The models could enhance not only the top forward-backward asymmetry at Tevatron, but also the top charge asymmetry at LHC, without too large same-sign top pair production rates. We identify parameter spaces for the U(1)^\prime gauge boson and (pseudo)scalar Higgs bosons where all the experimental data could be accommodated, including the case with about 125 GeV Higgs boson, as suggested recently by ATLAS and CMS.Comment: 11 pages, 6 figures, figures and discussion adde

    Dynamic nuclear polarization and spin-diffusion in non-conducting solids

    Full text link
    There has been much renewed interest in dynamic nuclear polarization (DNP), particularly in the context of solid state biomolecular NMR and more recently dissolution DNP techniques for liquids. This paper reviews the role of spin diffusion in polarizing nuclear spins and discusses the role of the spin diffusion barrier, before going on to discuss some recent results.Comment: submitted to Applied Magnetic Resonance. The article should appear in a special issue that is being published in connection with the DNP Symposium help in Nottingham in August 200

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
    corecore