188 research outputs found

    Energy aspects in traditional buildings at touristic places

    Get PDF
    Touristic sector is a most sensitive one in Mediterranean countries like Greece or Spain. Buildings with traditional architecture in touristic places represent an attraction for tourists but to these buildings the integration of renewable energy sources is a difficult aspect. Energy saving in buildings is significant for the energy targets of EC for 2020 and the implementation of Renewable Energy Sources (R.E.S.) in traditional buildings always poses new challenges for designers. In this paper we include analysis for the implementation of R.E.S. respecting traditional building design and atmosphere, which signifies a new constriction, by also an opportunity, seeing the sustainability paradigm in a more general way. Solar thermal collectors, photovoltaic and wind turbines, are visible and need a special care to be also adapted with the architecture of the touristic sites. Currently developed innovative solar energy systems and integration aspects are presented and strategies for a further expansion are discussed.Peer Reviewe

    Energy aspects in traditional buildings at touristic places

    Get PDF
    Touristic sector is a most sensitive one in Mediterranean countries like Greece or Spain. Buildings with traditional architecture in touristic places represent an attraction for tourists but to these buildings the integration of renewable energy sources is a difficult aspect. Energy saving in buildings is significant for the energy targets of EC for 2020 and the implementation of Renewable Energy Sources (R.E.S.) in traditional buildings always poses new challenges for designers. In this paper we include analysis for the implementation of R.E.S. respecting traditional building design and atmosphere, which signifies a new constriction, by also an opportunity, seeing the sustainability paradigm in a more general way. Solar thermal collectors, photovoltaic and wind turbines, are visible and need a special care to be also adapted with the architecture of the touristic sites. Currently developed innovative solar energy systems and integration aspects are presented and strategies for a further expansion are discussed.Peer Reviewe

    A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems

    Get PDF
    A crossed compound parabolic concentrator (CCPC) is applied into a photovoltaic/thermal (PV/T) hybrid solar collector, i.e. concentrating PV/T (CPV/T) collector, to develop new hybrid roof-top CPV/T systems. However, to optimise the system configuration and operational parameters as well as to predict their performances, a coupled optical, thermal and electrical model is essential. We establish this model by integrating a number of submodels sourced from literature as well as from our recent work on incidence-dependent optical efficiency, six-parameter electrical model and scaling law for outdoor conditions. With the model, electrical performance and cell temperature are predicted on specific days for the roof-top systems installed in Glasgow, Penryn and Jaen. Results obtained by the proposed model reasonably agree with monitored data and it is also clarified that the systems operate under off-optimal operating condition. Long-term electric performance of the CPV/T systems is estimated as well. In addition, effects of transient terms in heat transfer and diffuse solar irradiance on electric energy are identified and discussed

    Building-Integrated Photovoltaic/Thermal (BIPVT): LCA of a façade-integrated prototype and issues about human health, ecosystems, resources

    Get PDF
    Building-Integrated Photovoltaic/Thermal (BIPVT) technology offers multiple advantages; however, these types of installations include materials such as Photovoltaic (PV) cells and metals which considerably influence BIPVT environmental impact. Therefore, there is a need to evaluate BIPVT environmental profile, for instance by means of Life Cycle Assessment (LCA). In light of the issues mentioned above, the present article is an LCA study that assesses the environmental performance of a BIPVT prototype that has been developed and patented at the Ulster University (Belfast, UK). The investigation places emphasis on material manufacturing, based on Cumulative Energy Demand (CED), Global Warming Potential (GWP), ReCiPe, Ecological footprint and USEtox. The results show that according to all the adopted methods/environmental indicators and based on primary materials, the PV cells and the two vessels (steel) are the components with the three highest impacts. Scenarios which include recycling of steel, plastics and brass (landfill for the other materials has been assumed), based on CED, GWP 100a and ReCiPe endpoint, have been examined. It was found that steel recycling offers a considerable impact reduction, ranging from 47% to 85%. Furthermore, the impact of the proposed BIPVT module per m2 of thermal absorber has been calculated. The results, based on primary materials, show 4.92 GJprim/m2 and 0.34 t CO2.eq/m2 (GWP 100a). In addition, according to USEtox/ecotoxicity, USEtox/human toxicity-non-cancer (scenario based on primary materials), the PV cells present the highest contributions to the total impact of the module: 55% in terms of ecotoxicity and 86% concerning human toxicity/non-cancer. A comparison with literature is provided. Moreover, a separate section of the article is about factors which influence BIPVT environmental profile, discussing parameters such as the storage materials and the end-of-life management.The authors would like to thank “Ministerio de Economía y Competitividad” of Spain for the funding (grant reference ENE2016-81040-R)

    Carbon footprint of polycrystalline photovoltaic systems

    Get PDF
    The environmental and energy parameters of Photovoltaic (PV) systems play a very important role when compared to conventional power systems. In the present paper, a typical PV-system is analyzed to its elements and an assessment of the material and energy requirements during the production procedures is attempted. A Life Cycle Analysis (LCA) is being performed on the production system of photovoltaics. Energy and environmental analyses are extended to the production of the primary energy carriers. This allows having a complete picture of the life cycle of all the PV-components described in the present study. Four different scenarios are examined in detail providing every possible aspect of scientific interest involving polycrystalline PV systems. In order to obtain concrete results from this study, the specific working tool used is the Eco-Indicator ’95 (1999) as being reliable and widely applied and accepted within LCA community. A process that relates inventory information with relevant concerns about natural resource usage and potential effects of environmental loadings is attempted. Large-scale PV-systems have many advantages in comparison with a conventional power system (e.g. diesel power station) in electricity production. As a matter of fact, PV-systems become part of the environment and the ecosystems from the moment of their installation. Carbon Footprints of various PV-systems scenarios are greatly smaller than that of a diesel power station operation. Further technological improvements in PV module production and in the manufacture of Balance-of-System components, as well as extended use of renewable energy resources as primary energy resources could make Carbon Footprint of PV-systems even smaller. Extended operational period of time (O.P.T.) of PV-systems determined by system reliability should be given special attention, because it can dramatically mitigate energy resources and raw materials exploitation
    • …
    corecore