49 research outputs found

    Tolerability of breast ductal lavage in women from families at high genetic risk of breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ductal lavage (DL) has been proposed as a minimally-invasive, well-tolerated tool for obtaining breast epithelial cells for cytological evaluation of breast cancer risk. We report DL tolerability in <it>BRCA1/2 </it>mutation-positive and -negative women from an IRB-approved research study.</p> <p>Methods</p> <p>165 <it>BRCA1/2 </it>mutation-positive, 26 mutation-negative and 3 mutation unknown women underwent mammography, breast MRI and DL. Psychological well-being and perceptions of pain were obtained before and after DL, and compared with pain experienced during other screening procedures.</p> <p>Results</p> <p>The average <b><it>anticipated </it></b>and <b><it>experienced </it></b>discomfort rating for DL, 47 and 48 (0–100), were significantly higher (<it>p </it>< 0.01) than the <b><it>anticipated </it></b>and <b><it>experienced </it></b>discomfort of mammogram (38 and 34), MRI (36 and 25) or nipple aspiration (42 and 27). Women with greater pre-existing emotional distress experienced more DL-related discomfort than they anticipated. Women reporting DL-related pain as worse than expected were nearly three times more likely to refuse subsequent DL than those reporting it as the same or better than expected. Twenty-five percent of participants refused repeat DL at first annual follow-up.</p> <p>Conclusion</p> <p>DL was anticipated to be and experienced as <b>more </b>uncomfortable than other procedures used in breast cancer screening. Higher underlying psychological distress was associated with decreased DL tolerability.</p

    Biological variation of measured and estimated glomerular filtration rate in patients with chronic kidney disease

    Get PDF
    When assessing changes in glomerular filtration rate (GFR) it is important to differentiate pathological change from intrinsic biological and analytical variation. GFR is measured using complex reference methods (e.g. iohexol clearance). In clinical practice measurement of creatinine and cystatin C is used in equations (e.g. Modification of Diet in Renal Disease [MDRD] or Chronic Kidney Disease Epidemiology Collaboration [CKD-EPI]) to provide estimated GFR. We studied biological variability of measured and estimated GFR in twenty nephrology outpatients (10 male, 10 female; median age 71, range 50-80 years) with moderate CKD (GFR 30-59 mL/min/1.73 m2). Patients underwent weekly GFR measurement by iohexol clearance over four consecutive weeks. Simultaneously GFR was estimated using the MDRD, CKD-EPIcreatinine, CKD-EPIcystatinC and CKD-EPIcreatinine+cystatinC equations. Within-subject biological variation (CVI) expressed as a percentage [95% CI] for the MDRD (5.0% [4.3-6.1]), CKD-EPIcreatinine (5.3% [4.5-6.4]), CKD-EPIcystatinC (5.3% [4.5-6.5]), and CKD-EPIcreatinine+cystatinC (5.0% [4.3-6.2]) equations were broadly equivalent. CVI values for MDRD and CKD- EPIcreatinine+cystatinC were lower (p=0.027 and p=0.022 respectively) than that of measured GFR (6.7% [5.6-8.2]). Reference change values (RCV), the point at which a true change in a biomarker in an individual can be inferred to have occurred with 95% probability were calculated: using the MDRD equation, positive and negative RCVs were 15.1% and 13.1% respectively. If an individual’s baseline MDRD estimated GFR (mL/min/1.73 m2) was 59, significant increases or decreases would be to values >68 or <51 respectively. Within-subject variability of estimated GFR is lower than measured GFR. RCVs can be used to understand GFR changes in clinical practice

    Selective Release of MicroRNA Species from Normal and Malignant Mammary Epithelial Cells

    Get PDF
    MicroRNAs (miRNAs) in body fluids are candidate diagnostics for a variety of conditions and diseases, including breast cancer. One premise for using extracellular miRNAs to diagnose disease is the notion that the abundance of the miRNAs in body fluids reflects their abundance in the abnormal cells causing the disease. As a result, the search for such diagnostics in body fluids has focused on miRNAs that are abundant in the cells of origin. Here we report that released miRNAs do not necessarily reflect the abundance of miRNA in the cell of origin. We find that release of miRNAs from cells into blood, milk and ductal fluids is selective and that the selection of released miRNAs may correlate with malignancy. In particular, the bulk of miR-451 and miR-1246 produced by malignant mammary epithelial cells was released, but the majority of these miRNAs produced by non-malignant mammary epithelial cells was retained. Our findings suggest the existence of a cellular selection mechanism for miRNA release and indicate that the extracellular and cellular miRNA profiles differ. This selective release of miRNAs is an important consideration for the identification of circulating miRNAs as biomarkers of disease

    Polygenic risk modeling for prediction of epithelial ovarian cancer risk

    Get PDF
    Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs

    Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.Peer reviewe

    Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression:Identification of a modifier of breast cancer risk at locus 11q22.3

    Get PDF
    Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways.Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of similar to 320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2.We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 x 10(-6)). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance.We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.</p

    Identification of 22 susceptibility loci associated with testicular germ cell tumors

    Get PDF
    Testicular germ cell tumors (TGCT) are the most common tumor in young white men and have a high heritability. In this study, the international Testicular Cancer Consortium assemble 10,156 and 179,683 men with and without TGCT, respectively, for a genome-wide association study. This meta-analysis identifies 22 TGCT susceptibility loci, bringing the total to 78, which account for 44% of disease heritability. Men with a polygenic risk score (PRS) in the 95th percentile have a 6.8-fold increased risk of TGCT compared to men with median scores. Among men with independent TGCT risk factors such as cryptorchidism, the PRS may guide screening decisions with the goal of reducing treatment-related complications causing long-term morbidity in survivors. These findings emphasize the interconnected nature of two known pathways that promote TGCT susceptibility: male germ cell development within its somatic niche and regulation of chromosomal division and structure, and implicate an additional biological pathway, mRNA translation
    corecore