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Significance statement of key findings 

In this prospective study we have simultaneously, under controlled conditions, established 

the biological and analytical variability of glomerular filtration rate (GFR) and estimates of 

GFR in patients with moderate chronic kidney disease. Biological variability of estimates 

of GFR using the Modification of Diet in Renal Disease (MDRD) Study and Chronic 

Kidney Disease Epidemiology (CKD-EPI) equations were similar to each other, but slightly 

lower than that of GFR measured using iohexol clearance. Consequently estimated GFR 

would need to decline by approximately 14% for that change to be considered significant 

with 95% certainty, compared to an approximately 18% decline in measured GFR for the 

same degree of certainty. The data presented can be used to assist an objective 

understanding of GFR changes in clinical practice. Estimates of GFR are at least as 

reliable as measured GFR for monitoring changes over time but measured GFR should 

continue to be regarded as the preferred method when an accurate assessment of GFR is 

required. 
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Abstract  

 

When assessing changes in glomerular filtration rate (GFR) it is important to differentiate 

pathological change from intrinsic biological and analytical variation. GFR is measured 

using complex reference methods (e.g. iohexol clearance). In clinical practice 

measurement of creatinine and cystatin C is used in equations (e.g. Modification of Diet in 

Renal Disease [MDRD] or Chronic Kidney Disease Epidemiology Collaboration [CKD-

EPI]) to provide estimated GFR. We studied biological variability of measured and 

estimated GFR in twenty nephrology outpatients (10 male, 10 female; median age 71, 

range 50-80 years) with moderate CKD (GFR 30-59 mL/min/1.73 m2). Patients underwent 

weekly GFR measurement by iohexol clearance over four consecutive weeks. 

Simultaneously GFR was estimated using the MDRD, CKD-EPIcreatinine, CKD-EPIcystatinC 

and CKD-EPIcreatinine+cystatinC equations. Within-subject biological variation (CVI) expressed 

as a percentage [95% CI] for the MDRD (5.0% [4.3-6.1]), CKD-EPIcreatinine (5.3% [4.5-6.4]), 

CKD-EPIcystatinC (5.3% [4.5-6.5]), and CKD-EPIcreatinine+cystatinC (5.0% [4.3-6.2]) equations 

were broadly equivalent. CVI values for MDRD and CKD- EPIcreatinine+cystatinC were lower 

(p=0.027 and p=0.022 respectively) than that of measured GFR (6.7% [5.6-8.2]). 

Reference change values (RCV), the point at which a true change in a biomarker in an 

individual can be inferred to have occurred with 95% probability were calculated: using the 

MDRD equation, positive and negative RCVs were 15.1% and 13.1% respectively. If an 

individual’s baseline MDRD estimated GFR (mL/min/1.73 m2) was 59, significant 

increases or decreases would be to values >68 or <51 respectively. Within-subject 

variability of estimated GFR is lower than measured GFR. RCVs can be used to 

understand GFR changes in clinical practice. 

 

Keywords: biological variation, creatinine, cystatin C, glomerular filtration rate, iohexol, 

kidney disease, MDRD, CKD-EPI 
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Introduction 

 

Chronic kidney disease (CKD) is prevalent in the general population1-4 and is commonly 

identified using estimation of glomerular filtration rate (GFR). The aim of disease detection 

is to make decisions on therapeutic interventions, and to identify and manage those most 

likely to progress to kidney failure and/or those at high risk of morbidity and mortality. The 

ability of tests to identify which individuals with CKD are at high risk of progressive or fatal 

disease is a crucial issue. However, what constitutes progressive kidney disease has 

been variably defined. Furthermore, a significant problem has been the ability of GFR 

measurements and estimations to identify progression of kidney disease against 

background age-related change in GFR and the biological and measurement variability of 

both reference and estimated GFR.5 

 

Ideally, for accuracy GFR would be measured using either inulin clearance or one of 

several surrogate ‘reference methods’ in specialist clinical use (e.g. plasma clearance of 

iothalamate, iohexol or 51Cr ethylenediaminetetraacetic acid). However, these techniques 

are somewhat complex and time-consuming. Pragmatic estimates of GFR, based on 

serum creatinine or cystatin C measurement, or both, are widely used. As with any 

physiological measurement, GFR, whether measured or estimated, has an intrinsic within-

subject biological variability (CVI). Knowledge of this variability is critical to appreciation of 

disease-related change. Using a variety of reference markers, earlier studies have 

reported within-subject coefficients of variation (CV%) for the biological variation of GFR 

ranging between 5.5% and 12.1%.6-12 Whilst forming a useful basis for comparison, many 

of these previous estimates did not follow an appropriate construct for a biological 

variation study and do not permit comparison of measured and estimated GFR.13 

 

An understanding of biological variation of disease markers is essential to the 

interpretation of changes in response to disease events. Critical evaluation of the 
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significance of changes in results obtained on analysis of serial specimens can be 

performed only by consideration of CVI and analytical (CVA) variation.14 These data 

enable the derivation of the reference change value (RCV), the point at which a true 

change in a biomarker in an individual can be inferred to have occurred with a stated 

degree of probability: typically 95% probability is chosen as this is conventionally regarded 

as significant.14,15  

 

The aim of the present study is to define under standardised conditions the normal 

biological variability of measured GFR and hence derive mathematically the RCV. A 

subsidiary question is whether the CVI and RCV are the same if estimated instead of 

measured GFR is used.  

 

Results 

 

Characteristics of the study subjects are shown in Table 1. Medications were held 

constant during the four weeks of the study, except that two patients received a one week 

course of amoxicillin (500 mg tds) due to chest infection.  

 

All 20 patients attended all four iohexol clearance procedures excepting one patient who 

missed one appointment. Results from five iohexol clearances (five separate patients) 

were excluded before analysis, as the dose given was not fully administered or it was 

given subcutaneously. Application of Cochran and Reed’s tests led to the exclusion of 

between one and three duplicate measurements for measured or estimated GFR and to 

the exclusion of one outlying within-subject measurement for iohexol clearance 

(Supplementary Table S1). Overall, no patient was completely excluded and all 

calculations of biological variation for measured and estimated GFRs were based on a 

minimum of three weeks data in all individuals. 
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Estimates of components of biological variation are given in Table 2. The geometric exact 

CVI value [95% CI] for measured GFR was 6.7% [5.6-8.2].  CVI values for the estimated 

GFR equations were broadly equivalent: MDRD 5.0% [4.3-6.1], CKD-EPIcreatinine 5.3% [4.5-

6.4], CKD-EPIcystatinC 5.3% [4.5-6.5], and CKD-EPIcreatinine+cystatinC 5.0% [4.3-6.2] to each 

other. Modelling to investigate differences showed the CVI for MDRD and CKD-

EPIcreatinine+cystatinC estimated GFRs to be significantly (at 5% level) lower than for measured 

GFR (difference -1.8%, p=0.027 and difference -1.8%, p=0.022 respectively, see 

Supplementary Table S2). Using the MDRD equation, positive and negative RCVs were 

15.1% and 13.1% respectively. For example, if baseline MDRD GFR (mL/min/1.73 m2) in 

an individual is 59, significant increases or decreases would be to values >68 or <51 

respectively. 

 

Sensitivity analyses were carried out without outlier detection and deletion. Data were 

similar to those obtained following outlier removal, with analyses after outlier removal 

estimating slightly reduced CVs (Supplementary Table S3). 

 

Modelling to identify any trends over time resulted in non-significant slopes (coef=-0.005; 

95% CI (-0.020, 0.009); p=0.488), thus providing no evidence of a change in disease state 

(kidney function) over the duration of the study. 

 

Discussion 

 

To our knowledge, this is the first study to simultaneously establish the biological variation 

of measured and estimated GFR in patients with CKD. Following a recommended study 

design,13 in a prospective study we observed the within-subject biological variation of 

measured GFR to be 6.7%, with similar, although in some cases significantly lower, 

biological variation of estimated GFR (5.0%, 5.3%, 5.3% and 5.0% for the MDRD, CKD-

EPIcreatinine, CKD-EPIcystatinC and CKD-EPIcreatinine+cystatinC equations respectively). Taking 
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analytical and within-subject biological variability into account produced RCVs (%, 

positive/negative) of 21.5/-17.7 (measured GFR), 15.1/-13.1 (MDRD), 15.9/-13.7 (CKD-

EPIcreatinine), 15.9/-13.8 (CKD-EPIcystatinC) and 15.1/-13.1 (CKD-EPIcreatinine+cystatinC).  

 

Although there have been several previous studies of the biological variation of GFR, few 

have followed the rigour of design required of a biological variation study.13,14 

Nevertheless, several of these earlier studies report biological variability of measured 

GFR of a similar magnitude to that observed here, despite a variety of techniques and 

study designs; 4.5% (healthy individuals, plasma iohexol clearance),16 5.7% (CKD 

patients, plasma iohexol clearance),7 6.3% (CKD patients, renal 125I-Iothalamate 

clearance),8 5.5% (CKD patients with GFR >30 mL/min/1.73 m2, plasma 51Cr-

ethylenediaminetetraacetic acid [EDTA] clearance),6 with some authors reporting higher 

estimates; 9.8% (CKD patients, plasma 51Cr-EDTA clearance)10 and 8.0% (CKD patients, 

99mTe-DTPA clearance).9 Some of the differences observed may reflect the underlying 

level of kidney function in the groups studied: both Levey et al8 and Brochner-Mortensen 

et al6 report higher variation estimates in individuals with GFR<30 mL/min/1.73 m2. Other 

factors including length of time between repeat procedures (10 months) and total study 

duration (12 years),10 inattention to hydration status, fasting and exercise before and 

during the test9 may also have increased the variability reported in some studies.  

 

When considering any change in a patient’s results, healthcare practitioners need to be 

able to distinguish true change (‘signal’) from the ‘noise’ of variability. In clinical practice, 

biological variation is best considered in terms of the RCV, which takes both biological 

and analytical variation of measured GFR into account: the positive and negative RCVs of 

measured GFR were 21.5% and -17.7% respectively. Definitions of progressive kidney 

disease vary but it is important to consider whether, in the clinical context, the variability of 

measured GFR allows for detection of progressive kidney disease over a useful time 

frame. Reported ‘normal’ mean age-related decline in GFR of 1 mL/min/1.73 m2/year,17 or 
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reported rates of decline of 3.6 mL/min/1.73 m2/year and 2.8 mL/min/1.73 m2/year 

respectively in male and female community dwelling older adults with diabetes and 

moderate CKD18 could not be detected in individuals by annual GFR measurement. It is 

possible that reported annual mean GFR declines of 7.0 mL/min/1.73 m2/year amongst 

proteinuric (greater than 1 g/24 h) patients could be detected by annual monitoring of 

individual patient’s GFR.19 Importantly, based on the data presented here, monitoring of 

GFR will permit detection of progressive kidney disease as defined by recent guideline 

recommendations from Kidney Disease Improving Global Outcomes (KDIGO) and the 

National Institute for Health and Care Excellence (NICE). Both guidelines define a certain 

drop in GFR as an increase in disease category (e.g. G3a [GFR 45-59 mL/min/1.73 m2] to 

G3b [GFR 30-44 mL/min/1.73 m2]) accompanied by a fall in GFR of greater than or equal 

to 25% between two serial results. Alternatively, they define a significant change as a 

decrease in GFR of 15 mL/min/1.73 m2 or more per year.5,20 For example: if baseline 

measured GFR in an individual is 59 mL/min/1.73 m2, significant increases or decreases 

would be to values >72 or <48 mL/min/1.73 m2. Given the lower CVI and CVA of estimated 

GFR, slightly lower RCVs may be applied when monitoring patients using GFR estimating 

equations (e.g. if an individual’s baseline MDRD estimated GFR was 59, significant 

increases or decreases would be to values >68 or <51 mL/min/1.73 m2 respectively). 

However, it must be remembered that our biological variation estimates are obtained 

under idealised conditions, with optimisation of preanalytical variables and precise 

laboratory methods. In an uncontrolled operational clinical environment, it is likely that 

biological and analytical variation, and hence RCVs, would increase.  

 

The within-subject biological variation of serum creatinine we have observed (4.4%) is in 

broad agreement with values reported in other studies in both healthy (4.1% to 7.6%,16,21-

28) and diseased (5.7% to 9.9%23,29-31) cohorts. Enzymatic creatinine methods are less 

prone to interference than Jaffe methods and the use of an enzymatic assay in the 

present study improves confidence in the estimate of biological variation we have 
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reported. Whilst calculation of CVI excludes any contribution due to CVA, it cannot account 

for biological variability of non-creatinine chromogens (e.g. bilirubin, glucose, ketones, 

protein, and certain drugs) that are known to interfere in Jaffe methods of creatinine 

measurement. Similarly, our reported within-subject biological variation of cystatin C 

(4.0%) is similar to most (3.1%,32 4.1%,25 4.5%16,27 and 4.8%29) but not all (6.8%,28 8.6%23 

and 13.3%24) previous estimates. As for measured GFR, differences in study design and 

data analysis may account for differences in reported estimates of variation: for example, 

most of these studies did not report their approach to outlier detection; the time interval 

between repeat sampling was prolonged in some studies.28 

 

Depending on the equation used, estimated GFR is based on the concentration of 

creatinine, cystatin C or both. Therefore estimated GFR will have a similar CVI to 

creatinine or cystatin C, mathematically inflated by the power function in the respective 

equation. The point estimates for CVI of the four studied equations lie between 5.0% and 

5.3% and have overlapping confidence intervals. 

  

It is uncertain why the CVI of estimated GFR should be lower than that of measured GFR. 

Probably the complexity of the iohexol clearance procedure, involving multiple 

measurements and blood samplings, contributes to a higher CVI for measured than 

estimated GFR. However, it is also possible that the variability of estimated GFR is 

somewhat attenuated compared to physiological fluctuations in measured GFR, as noted, 

in an extreme example, following renal insult in acute kidney injury where there is a delay 

between the fall in GFR and the consequent rise in blood creatinine concentration.  

 

These data have implications for the use of measured versus estimated GFR in clinical 

practice and research. Within-subject biological variation of measured GFR was similar to 

that of estimated GFR, implying no disadvantage to the use of simple estimates of GFR 

when monitoring patients over time. The main priority for monitoring GFR is to detect 
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change and for this purpose estimated GFR is at least as reliable as measured GFR. This 

is important because measurement of GFR is time consuming and more costly than 

estimated GFR. However, this should not be interpreted as an indication that estimated 

GFR should replace measured GFR when an accurate assessment of GFR is required. 

Reference techniques are considered more accurate than estimated GFR primarily 

because they are not influenced by the non-GFR determinants of endogenous filtration 

markers. Reference GFR measurements will remain important as the benchmark in 

clinical research studies and to inform clinical situations in which more accurate 

knowledge of GFR is important. These situations include certain chemotherapies (e.g. 

carboplatin); the use of any drug that is nephrotoxic or renally-excreted and has a narrow 

therapeutic margin; the assessment of potential living related kidney donors; the 

assessment of GFR in patients with muscle-wasting disorders, including spina bifida and 

paraplegia; those undergoing nephrectomy or partial nephrectomy; and in certain 

paediatric renal patients. 

 

The strengths of this study include the use of an enzymatic creatinine assay and a three-

point iohexol clearance procedure with the final sample being taken at 4 h postinjection, 

which is considered suitable for patients with GFR>30 mL/min/1.73 m2.33 The study was 

adequately powered34 and followed a strict design to minimise preanalytical variation and 

investigator bias (Supplementary Table S4).13  Outliers were excluded using a formal 

exclusion protocol: sensitivity testing was undertaken using excluded data to confirm that 

presented results were representative. Estimation of components of variation was derived 

using a nested ANOVA approach, which takes into account analytical variation for 

estimation of within-subject biological variation. The studied patient group represents a 

major population in which monitoring of kidney function to detect worsening disease is 

regularly undertaken and which is mandated in international guidance.5,20 Prescribed 

medication was unaltered during the study, with the exception of two patients who 

received a course of amoxicillin. No patients showed significant trends in GFR during the 
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study period, confirming that the variation we have reported is physiological and not 

pathological in nature.  

 

Our study has some limitations. The cohort studied was recruited from a single centre and 

was exclusively Caucasian: biological variability estimates may not be transferable to 

other ethnic groups. Although the study was adequately powered to answer the primary 

question, we were unable to investigate whether variability is higher at differing levels of 

GFR or albuminuria. Although previous studies have observed statistically significant 

differences in CVI when individuals are stratified for level of GFR/albuminuria29 such 

effects are unlikely to be of practical importance.25 Our measured GFR data was based on 

a plasma iohexol clearance procedure. Whilst constant infusion urinary inulin clearance 

would be considered the reference measure of GFR, single-bolus plasma clearance of 

iohexol demonstrates good agreement with this technique and is widely used in clinical 

practice.35 In terms of CVI, plasma clearance techniques are likely to produce lower values 

than urinary clearance techniques due to problems of inaccurate urine collection. We have 

chosen to calculate RCVs representing 95% probability, as is conventional. However, if a 

lower probability was considered clinically acceptable, then the RCV would be smaller.22 

 

In clinical practice, in the setting of CKD identification of deterioration of kidney function 

tends to be based not upon two consecutive results but on multiple observations obtained 

over a period of time. Traditional RCV calculations only allow comparison between two 

consecutive measurements. When multiple measurements are available then use of RCV 

values as described herein will be susceptible to the effect of repeated testing, where the 

probability of a false-positive result increases with the number of results available. 

Because of this, in general terms RCV values increase with the number of observations 

available (i.e. a larger change is required compared to the baseline value to be deemed 

significant). Adjustments to the RCV calculation dependent on the number of results have 

been published but are relatively complex.36,37 Because of this, and also because our 
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patients were being studied within relatively controlled conditions as discussed above, the 

RCV values we have reported should be considered minimum values: in clinical practice, 

for the same certainty of change, larger RCVs may be required. 

 

In conclusion we describe the biological variability of measured and estimated GFR in a 

carefully designed study. The data generated have implications for monitoring of patients 

with CKD and clinical ability to detect CKD progression, both in clinical practice and in 

clinical trials, whether using measured or estimated GFR. Within-subject biological 

variation of measured GFR is similar to that of estimated GFR and, in terms of variability, 

suggests no real advantage to the use of measured GFR when monitoring patients over 

time. Nevertheless, measurement of GFR should continue to be regarded as the optimal 

approach when an accurate assessment of GFR is required. Most importantly, the 

information presented provides an evidence-base allowing clinicians to have meaningful 

discussions with their patients about the implications of changes in their GFR results.  

 

Methods 

 

Chronic kidney disease patients (n=20) with MDRD estimated GFR between 30 and 59 

mL/min/1.73 m2 sustained over at least 90 days were recruited at the Kent Kidney Care 

Centre, UK between August 2014 and July 2015.38 Patients with diabetes and proteinuria 

(ACR >30 mg/mmol) were included in the study. Patients who had a history of reaction to 

iodinated contrast media, who were pregnant, who had an episode of acute kidney injury 

within the last six months, amputees and those with an inability to consent due to 

cognitive impairment were excluded from the study. Patients provided written informed 

consent and the study had ethical approval (South-East Coast-Surrey Research Ethics 

Committee of the National Research Ethics Service reference number 13/LO/1349). The 

study conforms to the internationally agreed checklist for the reporting of studies of 

biological variation (Supplementary Table S4).13  
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The sample size was based on the precision of CVI, which was estimated to be 10%. With 

twenty participants recruited, tested on four occasions and assayed in duplicate and 

assuming data are log-normally distributed, an approximate 95% confidence interval (CI) 

for CVI has limits ±2% (absolute).  

 

Measurement and estimation of GFR 

Patients underwent four iohexol reference measures of GFR in four successive weeks, 

with standardisation for time of day and day of week. Participants were asked to follow a 

permitted food list from 22:00 the night before the procedure, being permitted a light 

breakfast with no high protein foods on the morning of the procedure. Demographic data, 

comorbidity information and prescription histories were recorded and blood pressure, 

weight and height documented. Blood samples were taken immediately prior to iohexol 

injection for serum creatinine and cystatin C measurement. Blood samples were collected 

using standard venepuncture procedures, including the use of a tourniquet, into gel-

separator (for serum cystatin and creatinine) and lithium heparin (for plasma iohexol) 

containing VacuetteTM tubes (Greiner Bio-One International) following manufacturer’s 

recommended order of draw. Plasma/serum was separated by centrifugation within 4 h of 

venepuncture and sample aliquots were stored at -80°C pending analysis. All analyses 

were undertaken within 9 months of venepuncture at a central laboratory. 

 

A 5 mL bolus of Omnipaque 240 (518 g/L iohexol corresponding to 240 g/L iodine, GE 

Healthcare www.gelifesciences.com) followed by 10 mL physiological saline was injected 

into the antecubital vein. A blood sample was taken at 5 minutes from the opposite arm to 

confirm that the iohexol had been administered intravenously. Further blood samples were 

collected at 120, 180 and 240 minutes after injection. Exact times of blood draws in 

relation to injection time were recorded. During the procedure individuals were allowed 

http://www.gelifesciences.com/


   

  14 

free access to fluids (no carbonated drinks), but asked to refrain from protein intake and 

excessive exercise. 

 

Detailed laboratory methods are available in the supplementary file. Briefly, iohexol was 

measured using electrospray isotope dilution tandem mass spectrometry. Iohexol 

concentrations were log transformed (natural log) and plotted as a function of time. GFR 

was calculated from the slope-intercept method using a single compartment model,  

GFR (mL/min) = 0.693 x iohexol volume of distribution (L) x 1000/half-life of iohexol (min). 

GFR was adjusted for body surface area (BSA)39 and then corrected for the fast 

exponential.40 

 

Serum creatinine was measured using an enzymatic assay standardised to the reference 

material, NIST SRM 967 and 914. Between-day imprecision (coefficient of variation, %) 

was 0.8%, 0.3% and 0.4% at concentrations of 75, 176 and 760 umol/L respectively. 

Cystatin C was measured by a turbidimetric immunoassay calibrated against the 

international certified reference material ERM-DA471/IFCC for cystatin C.41 GFR was 

estimated using the simplified isotope dilution mass-spectrometric (ID-MS) traceable 

version of the MDRD equation42 and the three CKD-EPI equations: CKD-EPIcreatinine, CKD-

EPIcystatinC and CKD-EPIcreatinine-cystatinC.43,44 

 

Statistical analysis 

Data were log-transformed and normality tests were performed using the Shapiro-Wilk 

test. Outliers between duplicate measurements and of within-subject variance were 

excluded using Cochran’s test and outliers amongst mean values of subjects were 

excluded using Reed’s test as advocated by Fraser and Harris.14 Sensitivity analyses 

were also performed without exclusion of identified outliers. Log transformation was used 

to simplify calculation and because it improved the normality of the data as assessed by 
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an increase in Shapiro–Wilk W statistic and visual examination of the distributions 

(Supplementary Figure S1 and Table S5).  

 

Terminology used was as proposed by Simundic et al.45 Analytical (CVA), CVI and 

between-subject (CVG) components of variation were calculated using standard 

approaches14 of linear random effects modelling with restricted maximum likelihood 

estimation (allowing for the clustering of observations within time points and repeated 

observations per patient) (Stata version 15). Exact geometric CVs [√exp(S2) − 1 ×

100,46,47] were calculated. Confidence intervals for SDs and CVs were estimated as 

described by Burdick and Graybill.48  Differences in measures of CV, comparing the 

estimated GFR measures to measured GFR were investigated using multilevel models 

accounting for the clustering of test observations within individuals, using unstructured 

covariance matrices, in addition to the clustering of test results (multiple results per 

person, observation points and assessments). The RCV for a change in GFR between 

two results with 95% probability was calculated using the approach for log-normal data 

giving a negative and positive limit.49 The number of specimens (n) required to produce a 

precise estimate of the homeostatic set-point with 95% confidence within +10% was 

calculated as: 

 

n = [1.96(CVI
2 + CVA

2)1/2/10]2 

 

For each biomarker the index of individuality (II) was calculated as: 

 

II = (CVI
2 + CVA

2)1/2/CVG 

 

To confirm kidney function was stable across the study period, the iohexol GFR measures 

were modelled to identify trend with time using a multilevel linear regression model 
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(allowing for clustering of assessments within time points and observations within 

individuals). 
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Table 1. Characteristics of the study population. Values for continuous data are shown 

as median (range). Anthropometric data is based on baseline measurements. Estimated 

and measured* GFR, creatinine and cystatin C data are calculated using all values over 

the four weeks. 

 

n 20 

Age, y 71 (50-80) 

M:F 10:10 

Caucasian (n) 20 

Height, cm 170.5 (154-194) 

Weight, kg 79.5 (47.1-118.1) 

Body surface area, m2 1.99 (1.42-2.47) 

Body mass index, kg/m2 28.2 (19.6-40.9) 

Medication record (n) Thiazide diuretic (3), loop diuretic (3), 
potassium sparing diuretic (2), beta-

blocker (7), calcium antagonist (4), ACE 
inhibitor (8), angiotensin 2 receptor 

blocker (6), alpha-blocker (1), isosorbide 
mononitrate (1), HMG CoA reductase 

inhibitor (13), allopurinol (4), antiplatelet 
drugs (7)   

Comorbidity (n) Type 2 diabetes mellitus (3), ischaemic 
heart disease (7), angina (1), heart 

failure (2) 
 

Smoker – current/former (n) 1/10 

Urine albumin concentration <3 mg/mmol (n) 9 

Urine albumin concentration 3-30 mg/mmol (n) 7 

Urine albumin concentration >30 mg/mmol (n) 4 

Serum creatinine, µmol/L 124 (79-182) 

Serum cystatin C, mg/L 1.67 (1.01-2.30) 

Measured GFR, mL/min/1.73 m2 49.0 (30.8-71.6)* 

MDRD, mL/min/1.73 m2   42.2 (31.5-61.4) 
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CKD-EPIcreatinine, mL/min/1.73 m2 43.0 (30.8-62.8) 

CKD-EPIcystatinC, mL/min/1.73 m2 36.8 (23.5-67.1) 

CKD-EPIcreatinine+cystatinC, mL/min/1.73 m2 38.2 (27.2-65.4) 

 

Abbreviations: ACE, angiotensin converting enzyme; CKD-EPI, Chronic Kidney Disease 

Epidemiology Collaboration; HMG, hydroxymethyl glutaryl; MDRD, Modification of Diet in 

Renal Disease 

*Excludes data from five failed iohexol procedures (five separate patients). 
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Table 2. Summary of components of variation for creatinine and cystatin C and measured and estimated glomerular filtration rate (GFR) 

 

    Estimated GFR 

 
Measured GFR Creatinine Cystatin C 

MDRD CKD-EPIcreatinine CKD-EPICystatinC 

CKD-

EPIcreatinine+CystatinC 

Geometric exact 
      

CVA (%) 2.3 (1.9, 2.7) 0.7 (0.6, 0.8) 0.6 (0.5, 0.7) 0.8 (0.7, 0.9) 0.8 (0.7, 1.0) 0.7 (0.6, 0.9) 0.6 (0.5, 0.7) 

CVI (%) 6.7 (5.6, 8.2) 4.4 (3.7, 5.3) 4.0 (3.4, 4.9) 5.0 (4.3, 6.1) 5.3 (4.5, 6.4) 5.3 (4.5, 6.5) 5.0 (4.3, 6.2) 

CVG (%) 16.7 (12.5, 24.9) 20.0 (15.0, 29.6) 19.0 (14.4, 28.2) 17.8 (13.4, 26.0) 19.3 (15.5, 29.2) 25.2(18.9, 37.5) 20.2 (15.2, 30.0) 

        
Positive RCV (%) 21.5 13.0 11.8 15.1 15.9 15.9 15.1 

Negative RCV (%) -17.7 -11.5 -10.6 -13.1 -13.7 -13.8 -13.1 

Homeostatic set 

point 
2 1 1 1 1 1 1 

Index of 

Individuality  
0.4 0.2 0.2 0.3 0.3 0.2 0.3 

 

 

All CV values expressed as percentages. 95% confidence intervals were calculated using methods of Burdick and Graybill.48    

Abbreviations: CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; CVA, analytical variation; CVG, between-subject variation; CVI, 

within-subject biological variation; MDRD, Modification of Diet in Renal Disease; RCV, reference change value
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