672 research outputs found
Neutrino decay as a possible interpretation to the MiniBooNE observation with unparticle scenario
In a new measurement on neutrino oscillation , the
MiniBooNE Collaboration observes an excess of electron-like events at low
energy and the phenomenon may demand an explanation which obviously is beyond
the oscillation picuture. We propose that heavier neutrino decaying
into a lighter one via the transition process
where denotes any light products, could be a natural mechanism. The
theoretical model we employ here is the unparticle scenario established by
Georgi. We have studied two particular modes \nu_\mu\to \nu_e+\Un and
. Unfortunately, the number coming out from
the computation is too small to explain the observation. Moreover, our results
are consistent with the cosmology constraint on the neutrino lifetime and the
theoretical estimation made by other groups, therefore we can conclude that
even though neutrino decay seems plausible in this case, it indeed cannot be
the source of the peak at lower energy observed by the MiniBooNE collaboration
and there should be other mechanisms responsible for the phenomenon.Comment: 14 pages, conclusions are changed; published version for EPJ
Detecting Microscopic Black Holes with Neutrino Telescopes
If spacetime has more than four dimensions, ultra-high energy cosmic rays may
create microscopic black holes. Black holes created by cosmic neutrinos in the
Earth will evaporate, and the resulting hadronic showers, muons, and taus may
be detected in neutrino telescopes below the Earth's surface. We simulate such
events in detail and consider black hole cross sections with and without an
exponential suppression factor. We find observable rates in both cases: for
conservative cosmogenic neutrino fluxes, several black hole events per year are
observable at the IceCube detector; for fluxes at the Waxman-Bahcall bound,
tens of events per year are possible. We also present zenith angle and energy
distributions for all three channels. The ability of neutrino telescopes to
differentiate hadrons, muons, and possibly taus, and to measure these
distributions provides a unique opportunity to identify black holes, to
experimentally constrain the form of black hole production cross sections, and
to study Hawking evaporation.Comment: 20 pages, 9 figure
Orbital stability: analysis meets geometry
We present an introduction to the orbital stability of relative equilibria of
Hamiltonian dynamical systems on (finite and infinite dimensional) Banach
spaces. A convenient formulation of the theory of Hamiltonian dynamics with
symmetry and the corresponding momentum maps is proposed that allows us to
highlight the interplay between (symplectic) geometry and (functional) analysis
in the proofs of orbital stability of relative equilibria via the so-called
energy-momentum method. The theory is illustrated with examples from finite
dimensional systems, as well as from Hamiltonian PDE's, such as solitons,
standing and plane waves for the nonlinear Schr{\"o}dinger equation, for the
wave equation, and for the Manakov system
How spiking neurons give rise to a temporal-feature map
A temporal-feature map is a topographic neuronal representation of temporal attributes of phenomena or objects that occur in the outside world. We explain the evolution of such maps by means of a spike-based Hebbian learning rule in conjunction with a presynaptically unspecific contribution in that, if a synapse changes, then all other synapses connected to the same axon change by a small fraction as well. The learning equation is solved for the case of an array of Poisson neurons. We discuss the evolution of a temporal-feature map and the synchronization of the single cellsâ synaptic structures, in dependence upon the strength of presynaptic unspecific learning. We also give an upper bound for the magnitude of the presynaptic interaction by estimating its impact on the noise level of synaptic growth. Finally, we compare the results with those obtained from a learning equation for nonlinear neurons and show that synaptic structure formation may profit
from the nonlinearity
Narrow width of a glueball decay into two mesons
The widths of a glueball decay to two pions or kaons are analyzed in the pQCD
framework. Our results show that the glueball ground state has small branching
ratio for two-meson decay mode, which is around . The predicted values
are consistent with the data of if particle is a
glueball. Applicability of pQCD to the glueball decay and comparison
with decay are also discussed.Comment: 12 pages, revtex, 2 ps figure
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV
A search is presented for physics beyond the standard model (BSM) in final
states with a pair of opposite-sign isolated leptons accompanied by jets and
missing transverse energy. The search uses LHC data recorded at a
center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to
an integrated luminosity of approximately 5 inverse femtobarns. Two
complementary search strategies are employed. The first probes models with a
specific dilepton production mechanism that leads to a characteristic kinematic
edge in the dilepton mass distribution. The second strategy probes models of
dilepton production with heavy, colored objects that decay to final states
including invisible particles, leading to very large hadronic activity and
missing transverse energy. No evidence for an event yield in excess of the
standard model expectations is found. Upper limits on the BSM contributions to
the signal regions are deduced from the results, which are used to exclude a
region of the parameter space of the constrained minimal supersymmetric
extension of the standard model. Additional information related to detector
efficiencies and response is provided to allow testing specific models of BSM
physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
- âŚ