543 research outputs found

    D-Branes in the Green-Schwarz Formalism

    Get PDF
    We give a basic account of supersymmetric open strings and D-branes using the Green-Schwarz formalism, obtaining a manifestly spacetime supersymmetric description of their spectrum. In addition we discuss a mechanism whereby some of the D-brane states are projected out and which can lead to chiral quantum field theories on the brane.Comment: 13 pages phyzzx. Reference added, to appear in Phys. Lett.

    Tangential intersection of branches of motion

    Get PDF
    The branches of motion in the configuration space of a reconfigurable linkage can intersect in different ways leading to different types of singularities. In the vast majority of reported linkages whose configuration spaces contain multiple branches of motion the intersection happens transversally, allowing local methods, like the computation of its tangent cone, to identify different branches by means of their tangents. However, if these branches are of the same dimension and they intersect tangentially, it is not possible to identify them by means of the tangent cone at the singularity as the tangent spaces to the branches are the same. Although this possibility has been mentioned by a few researchers, whether linkages with this kind of tangent intersection of branches of motion exist is still an open question. In this paper, it is shown that the answer to this question is yes: A local method is proposed for the effective identification of branches of motion intersecting tangentially, and a method for the type synthesis of linkages that exhibit this particular type of singularity is presente

    Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization

    Get PDF
    We present a practical implementation of an optimal first-order method, due to Nesterov, for large-scale total variation regularization in tomographic reconstruction, image deblurring, etc. The algorithm applies to μ\mu-strongly convex objective functions with LL-Lipschitz continuous gradient. In the framework of Nesterov both μ\mu and LL are assumed known -- an assumption that is seldom satisfied in practice. We propose to incorporate mechanisms to estimate locally sufficient μ\mu and LL during the iterations. The mechanisms also allow for the application to non-strongly convex functions. We discuss the iteration complexity of several first-order methods, including the proposed algorithm, and we use a 3D tomography problem to compare the performance of these methods. The results show that for ill-conditioned problems solved to high accuracy, the proposed method significantly outperforms state-of-the-art first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure

    QGP flow fluctuations and the characteristics of higher moments

    Full text link
    The dynamical development of expanding Quark-gluon Plasma (QGP) flow is studied in a 3+1D fluid dynamical model with a globally symmetric, initial condition. We minimize fluctuations arising from complex dynamical processes at finite impact parameters and from fluctuating random initial conditions to have a conservative fluid dynamical background estimate for the statistical distributions of the thermodynamical parameters. We also avoid a phase transition in the equation of state, and we let the matter supercool during the expansion. Then central Pb+Pb collisions at sNN=2.76\sqrt{s_{NN}} = 2.76 TeV are studied in an almost perfect fluid dynamical model, with azimuthally symmetric initial state generated in a dynamical flux-tube model. The general development of thermodynamical extensives are also shown for lower energies. We observe considerable deviations from a thermal equilibrium source as a consequence of the fluid dynamical expansion arising from a least fluctuating initial state

    Hidden Order in the Cuprates

    Full text link
    We propose that the enigmatic pseudogap phase of cuprate superconductors is characterized by a hidden broken symmetry of d(x^2-y^2)-type. The transition to this state is rounded by disorder, but in the limit that the disorder is made sufficiently small, the pseudogap crossover should reveal itself to be such a transition. The ordered state breaks time-reversal, translational, and rotational symmetries, but it is invariant under the combination of any two. We discuss these ideas in the context of ten specific experimental properties of the cuprates, and make several predictions, including the existence of an as-yet undetected metal-metal transition under the superconducting dome.Comment: 12 pages of RevTeX, 9 eps figure

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995

    Protons in near earth orbit

    Get PDF
    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is parameterized by a power law. Below the geomagnetic cutoff a substantial second spectrum was observed concentrated at equatorial latitudes with a flux ~ 70 m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure

    A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01

    Get PDF
    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the 100MeV\sim 100 \mathrm{MeV} to 1TeV1 \mathrm{TeV} range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected 10810^8 cosmic ray triggers. Part of the \emph{Mir} space station was within the AMS-01 field of view during the four day \emph{Mir} docking phase of this flight. We have reconstructed an image of this part of the \emph{Mir} space station using secondary π\pi^- and μ\mu^- emissions from primary cosmic rays interacting with \emph{Mir}. This is the first time this reconstruction was performed in AMS-01, and it is important for understanding potential backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor stylistic and grammer change

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore