516 research outputs found

    Optical absorption in the strong coupling limit of Eliashberg theory

    Full text link
    We calculate the optical conductivity of superconductors in the strong-coupling limit. In this anomalous limit the typical energy scale is set by the coupling energy, and other energy scales such as the energy of the bosons mediating the attraction are negligibly small. We find a universal frequency dependence of the optical absorption which is dominated by bound states and differs significantly from the weak coupling results. A comparison with absorption spectra of superconductors with enhanced electron-phonon coupling shows that typical features of the strong-coupling limit are already present at intermediate coupling.Comment: 10 pages, revtex, 4 uuencoded figure

    Calculation of excited polaron states in the Holstein model

    Full text link
    An exact diagonalization technique is used to investigate the low-lying excited polaron states in the Holstein model for the infinite one-dimensional lattice. For moderate values of the adiabatic ratio, a new and comprehensive picture, involving three excited (coherent) polaron bands below the phonon threshold, is obtained. The coherent contribution of the excited states to both the single-electron spectral density and the optical conductivity is evaluated and, due to the invariance of the Hamiltonian under the space inversion, the two are shown to contain complementary information about the single-electron system at zero temperature. The chosen method reveals the connection between the excited bands and the renormalized local phonon excitations of the adiabatic theory, as well as the regime of parameters for which the electron self-energy has notable non-local contributions. Finally, it is shown that the hybridization of two polaron states allows a simple description of the ground and first excited state in the crossover regime.Comment: 12 pages, 9 figures, submitted to PR

    NMR and NQR Fluctuation Effects in Layered Superconductors

    Full text link
    We study the effect of thermal fluctuations of the s-wave order parameter of a quasi two dimensional superconductor on the nuclear spin relaxation rate near the transition temperature Tc. We consider both the effects of the amplitude fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations in weakly coupled layered superconductors. In the treatment of the amplitude fluctuations we employ the Gaussian approximation and evaluate the longitudinal relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair breaking effects, using the static pair fluctuation propagator D. The increase in 1/T1 due to pair breaking in D is overcompensated by the decrease arising from the single particle Green's functions. The result is a strong effect on 1/T1 for even a small amount of pair breaking. The phase fluctuations are described in terms of dynamical BKT excitations in the form of pancake vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field fluctuations caused by the translational motion of VA excitations on 1/T1 and on the transverse relaxation rate 1/T2 on both sides of the BKT transitation temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly on the diffusion constant that governs the motion of free and bound vortices as well as the annihilation of VA pairs. We discuss the relaxation rates for real multilayer systems where the diffusion constant can be small and thus increase the lifetime of a VA pair, leading to an enhancement of the rates. We also discuss in some detail the experimental feasibility of observing the effects of amplitude fluctuations in layered s-wave superconductors such as the dichalcogenides and the effects of phase fluctuations in s- or d-wave superconductors such as the layered cuprates.Comment: 38 pages, 12 figure

    Mapping the planet’s critical natural assets

    Get PDF
    Sustaining the organisms, ecosystems and processes that underpin human wellbeing is necessary to achieve sustainable development. Here we define critical natural assets as the natural and semi-natural ecosystems that provide 90% of the total current magnitude of 14 types of nature’s contributions to people (NCP), and we map the global locations of these critical natural assets at 2 km resolution. Critical natural assets for maintaining local-scale NCP (12 of the 14 NCP) account for 30% of total global land area and 24% of national territorial waters, while 44% of land area is required to also maintain two global-scale NCP (carbon storage and moisture recycling). These areas overlap substantially with cultural diversity (areas containing 96% of global languages) and biodiversity (covering area requirements for 73% of birds and 66% of mammals). At least 87% of the world’s population live in the areas benefitting from critical natural assets for local-scale NCP, while only 16% live on the lands containing these assets. Many of the NCP mapped here are left out of international agreements focused on conserving species or mitigating climate change, yet this analysis shows that explicitly prioritizing critical natural assets and the NCP they provide could simultaneously advance development, climate and conservation goals.We thank all the participants of two working groups hosted by Conservation International and the Natural Capital Project for their insights and intellectual contributions. For further advice or assistance, we thank A. Adams, K. Brandon, K. Brauman, A. Cramer, G. Daily, J. Fisher, R. Gould, L. Mandle, J. Montgomery, A. Rodewald, D. Rossiter, E. Selig, A. Vogl and T. M. Wright. The two working groups that provided the foundation for this analysis were funded by support from the Marcus and Marianne Wallenberg Foundation to the Natural Capital Project (R.C.-K. and R.P.S.) and the Betty and Gordon Moore to Conservation International (R.A.N. and P.M.C.)

    Macrophage delivered HSV1716 is active against triple negative breast cancer

    Get PDF
    Oncolytic viruses (OV) promote anti-tumour responses through the initiation of immunogenic cancer cell death which activates the host’s systemic anti-tumour immunity. We have previously shown that intravenously administered HSV1716 is an effective treatment for mammary cancer. However, intravenous administration of a virus has the potential to result in neutralization and sequestration of the virus which may reduce efficacy. Here, we show that the oncolytic virus HSV1716 can be administered within a cellular carrier (macrophages). PyMT and 4T1 murine mammary cancer cell lines were implanted into immuno-competent murine models (orthotopic primary, early metastatic and brain metastasis models). HSV1716 or macrophages armed with HSV1716 (M-HSV1716) were administered intravenously, and tumour size was quantified using caliper measurement or bioluminescence imaging. Administration of M-HSV1716 led to tumour shrinkage and increased the survival of animals. Furthermore, these results were achieved with a 100-fold lower viral load, which has the potential for decreased toxicity. Our results demonstrate that M-HSV1716 is associated with activity against murine mammary cancers and provides an alternative platform for the systemic delivery of OV

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    corecore