42 research outputs found

    Gap junction intercellular communication: A review of a potential platform to modulate craniofacial tissue engineering

    Full text link
    Defects in craniofacial tissues, resulting from trauma, congenital abnormalities, oncologic resection or progressive deforming diseases, may result in aesthetic deformity, pain and reduced function. Restoring the structure, function and aesthetics of craniofacial tissues represents a substantial clinical problem in need of new solutions. More biologically-interactive biomaterials could potentially improve the treatment of craniofacial defects, and an understanding of developmental processes may help identify strategies and materials that can be used in tissue engineering. One such strategy that can potentially advance tissue engineering is cell–cell communication. Gap junction intercellular communication is the most direct way of achieving such signaling. Gap junction communication through connexin-mediated junctions, in particular connexin 43 (Cx43), plays a major role bone development. Given the important role of Cx43 in controlling development and differentiation, especially in bone cells, controlling the expression of Cx43 may provide control over cell-to-cell communication and may help overcome some of the challenges in craniofacial tissue engineering. Following a review of gap junctions in bone cells, the ability to enhance cell–cell communication and osteogenic differentiation via control of gap junctions is discussed, as is the potential utility of this approach in craniofacial tissue engineering. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2009Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/61547/1/31127_ftp.pd

    Tissue engineering: state of the art in oral rehabilitation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74998/1/j.1365-2842.2009.01939.x.pd

    The Fate of Preserved Autogenous Bone Graft

    No full text

    Minocycline and oral pigmentation

    No full text
    Minocycline is a semisynthetic tetracycline used in the treatment of inflammatory acne because of its broad spectrum of activity, less common development of resistant organisms, and its anti-inflammatory effects. A number of adverse reactions are reported, including skin and oral pigmentation. This paper details the pharmacology of minocycline and describes the pigmentation and likely mechanisms active in both hard and soft tissues. Oral pigmentation usually involves the hard tissues only and presents typically as a discrete band occupying the central zone of the alveolar mucosa and palate. As with other sites, it may persist following withdrawal of the drug. Early recognition by the dental practitioner may allow an alternative form of therapy to be sought, minimizing the likelihood of a longterm aesthetic problem
    corecore