1,609 research outputs found

    Giving patients granular control of personal health information: Using an ethics ‘Points to Consider’ to inform informatics system designers

    Get PDF
    Objective: There are benefits and risks of giving patients more granular control of their personal health information in electronic health record (EHR) systems. When designing EHR systems and policies, informaticists and system developers must balance these benefits and risks. Ethical considerations should be an explicit part of this balancing. Our objective was to develop a structured ethics framework to accomplish this. Methods: We reviewed existing literature on the ethical and policy issues, developed an ethics framework called a “Points to Consider” (P2C) document, and convened a national expert panel to review and critique the P2C. Results: We developed the P2C to aid informaticists designing an advanced query tool for an electronic health record (EHR) system in Indianapolis. The P2C consists of six questions (“Points”) that frame important ethical issues, apply accepted principles of bioethics and Fair Information Practices, comment on how questions might be answered, and address implications for patient care. Discussion: The P2C is intended to clarify whatis at stake when designers try to accommodate potentially competing ethical commitments and logistical realities. The P2C was developed to guide informaticists who were designing a query tool in an existing EHR that would permit patient granular control. While consideration of ethical issues is coming to the forefront of medical informatics design and development practices, more reflection is needed to facilitate optimal collaboration between designers and ethicists. This report contributes to that discussion

    Points to consider in ethically constructing patient-controlled electronic health records

    Get PDF
    Patient advocates and leaders in informatics have long proposed that patients should have greater ability to control the information in their electronic health record (EHR), including how it can be accessed by their health care providers. The value of such “granular” control, as it has been termed, has been supported prominently in an influential report by the President’s Council of Advisors on Science and Technology (PCAST). Recently, the U.S. Department of Health and Human Services (HHS) Office of the National Coordinator for Health Information Technology (ONC) funded several projects to study key components of EHR systems, including exploring ways to allow granular control. This “Points to Consider” document provides an overview of the benefits, risks and challenges of granular control of EHRs; a review of the key ethical principles, values, and Fair Information Practices that ought to guide development of an EHR that accommodates granular control, and seven detailed Points to Consider to guide decision making.Award No: 90HT0054/01, a cooperative agreement program from the US Department of Health and Human Services, Office of the National Coordinator for Health IT to Indiana Health Information Technology, Inc. (IHIT) under the State HIE – Challenge Grant Program to the Indiana University School of Medicine and Regenstrief Institute, Inc

    Data visualization for truth maintenance in clinical decision support systems

    Get PDF
    Background and objectives The goal is to inform proactive initiatives to expand the knowledge base of clinical decision support systems. Design and setting We describe an initiative in which research informationists and health services researchers employ visualization tools to map logic models for clinical decision support within an electronic health record. Materials and methods We mapped relationships using software for social network analysis: NodeXL and CMAP. We defined relationships by shared observations, such as two Arden rules within medical logic modules that consider the same clinical observation, or by the presence of common keywords that were used to label rules according to standardized vocabularies. Results We studied the Child Health Improvement through Computer Automation (CHICA) system, an electronic medical record that contains 170 unique variables representing discrete clinical observations. These variables were used in 300 medical logic modules (MLM's) that prompted health care providers to deliver preventive counseling or otherwise served as clinical decision support. Using data visualization tools, we generated maps that illustrate connections, or lack thereof, between clinical topics within CHICA's MLMs. Conclusions The development of such maps may allow multiple disciplines commonly interacting over EMR platforms, and various perspectives (clinicians, programmers, informationists) to work more effectively as teams to refine the EMR by programming logic routines to address co-morbidities or other instances where domains of medical knowledge should be connected

    Incorporating chemical signalling factors into cell-based models of growing epithelial tissues

    Get PDF
    In this paper we present a comprehensive computational framework within which the effects of chemical signalling factors on growing epithelial tissues can be studied. The method incorporates a vertex-based cell model, in conjunction with a solver for the governing chemical equations. The vertex model provides a natural mesh for the finite element method (FEM), with node movements determined by force laws. The arbitrary Lagrangian–Eulerian formulation is adopted to account for domain movement between iterations. The effects of cell proliferation and junctional rearrangements on the mesh are also examined. By implementing refinements of the mesh we show that the finite element (FE) approximation converges towards an accurate numerical solution. The potential utility of the system is demonstrated in the context of Decapentaplegic (Dpp), a morphogen which plays a crucial role in development of the Drosophila imaginal wing disc. Despite the presence of a Dpp gradient, growth is uniform across the wing disc. We make the growth rate of cells dependent on Dpp concentration and show that the number of proliferation events increases in regions of high concentration. This allows hypotheses regarding mechanisms of growth control to be rigorously tested. The method we describe may be adapted to a range of potential application areas, and to other cell-based models with designated node movements, to accurately probe the role of morphogens in epithelial tissues

    Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    Get PDF
    The “common variant—common disease” hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased vs. matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the “common variant—common disease” hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics. Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14 bp-indel) frequencies are significantly increased by more than 5% over control populations (Table 2). The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2). Three activating KIR genes: 3DS1, 2DS1, and 2DS2 have increased frequencies of 15, 22, and 14% in autism populations, respectively. There is a 6% increase in total activating KIR genes in autism over control subjects. And, more importantly there is a 12% increase in activating KIR genes and their cognate HLA alleles over control populations (Torres et al., 2012a). These data suggest the interaction of HLA ligand/KIR receptor pairs encoded on two different chromosomes is more significant as a ligand/receptor complex than separately in autism

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore