1,893 research outputs found

    Deterioration of Parkinson's disease during hospitalization: survey of 684 patients

    Get PDF
    Abstract Background A substantial fraction of Parkinson's disease patients deteriorate during hospitalisation, but the precise proportion and the reasons why have not been studied systematically and the focus has been on surgical wards and on Accident & Emergency departments. We assessed the prevalence and risk factors of deterioration of Parkinson's disease symptoms during hospitalization, including all wards. Methods We invited Parkinson's disease patients from three neurology departments in The Netherlands to answer a standardised questionnaire on general, disease and hospital related issues. Patients who had been hospitalized in the previous year were included and analysed. Possible risk factors for Parkinson's disease deterioration were identified. Proportions were analysed using the Chi-Square test and a logistic regression analysis was performed. Results Eighteen percent of 684 Parkinson's disease patients had been hospitalized at least once in the last year. Twenty-one percent experienced deterioration of motor symptoms, 33% did have one or more complications and 26% had received incorrect anti-Parkinson's medication. There were no statistically significant differences for these variables between admissions on neurologic or non-neurologic wards and between having surgery or not. Incorrect medication during hospitalization was significantly associated with higher risk (OR 5.8, CI 2.5-13.7) of deterioration, as were having infections (OR 6.7 CI 1.8-24.7). A higher levodopa equivalent dose per day was a significant risk factor for deterioration. When adjusting for different variables, wrong medication distribution was the most important risk factor for deterioration. Conclusions Incorrect medication and infections are the important risk factors for deterioration of Parkinson's disease patients both for admissions with and without surgery and both for admissions on neurologic and non-neurologic wards. Measures should be taken to improve care and incorporated in guidelines.</p

    Expression of ZIC genes in the development of the chick inner ear and nervous system

    Full text link
    ZIC genes, vertebrate homologues of the Drosophila pair-rule gene odd-paired ( opa ), function in embryonic pattern formation, in the early stages of central nervous system neurogenesis and in cerebellar maturation. Mouse Zic genes are expressed in restricted, and in some cases overlapping, patterns during development, particularly in the central and peripheral nervous systems. We identified chick ZIC2 in a differential display analysis of the auditory system designed to find genes up-regulated after noise trauma. In this study, we examined the expression of chick ZIC1 , ZIC2 , and ZIC3 by in situ hybridization in normal inner ear development and in the tissues that influence its development, including the hindbrain, the neural crest, and the periotic mesenchyme. Between Hamburger and Hamilton stages 13 and 24, all three ZIC genes were found in the dorsal periotic mesenchyme adjacent to the developing inner ear. ZIC1 mRNA was expressed in the otocyst epithelium between stages 12 and 24, in some sensory tissue, as well as in a striped pattern in the floorplate of the hindbrain that appears to be complementary to that of Chordin, a gene known to regulate ZIC expression in frogs. Chick ZIC genes are also expressed in the neuroectoderm, paraxial mesenchyme, brain, spinal cord, neural crest, and/or the overlying ectoderm as well as the limb buds. In general, ZIC1 and ZIC2 expression patterns overlapped, although ZIC2 expression was less robust; ZIC3 expression was minimal. These observations suggest that ZIC genes, in addition to their known roles in brain development, may play an important role in the development of the chick inner ear. Developmental Dynamics 702–712, 2003. © 2003 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35173/1/10262_ftp.pd

    DAN directs endolymphatic sac and duct outgrowth in the avian inner ear

    Full text link
    Bone morphogenetic proteins (BMPs) are expressed in the developing vertebrate inner ear and participate in inner ear axial patterning and the development of its sensory epithelium. BMP antagonists, such as noggin, chordin, gremlin, cerberus, and DAN (differential screening-selected gene aberrative in neuroblastoma) inhibit BMP activity and establish morphogenetic gradients during the patterning of many developing tissues and organs. In this study, the role of the BMP antagonist DAN in inner ear development was investigated. DAN-expressing cell pellets were implanted into the otocyst and the periotic mesenchyme to determine the effects of exogenous DAN on otic development. Similar to the effects on the inner ear seen after exposure of otocysts to the BMP4 antagonist noggin, semicircular canals were truncated or eliminated based upon the site of pellet implantation. Unique to the DAN implantations, however, were effects on the developing endolymphatic duct and sac. In DAN-treated inner ears, endolymphatic ducts and sacs were merged with the crus or grew into the superior semicircular canal. Both the canal and endolymphatic duct and sac effects were rescued by joint implantation of BMP4-expressing cells. Electroporation of DAN antisense morpholinos into the epithelium of stage 15–17 otocysts, blocking DAN protein synthesis, resulted in enlarged endolymphatic ducts and sacs as well as smaller semicircular canals in some cases. Taken together, these data suggest a role for DAN both in helping to regulate BMP activity spatially and temporally and in patterning and partitioning of the medial otic tissue between the endolymphatic duct/sac and medially derived inner ear structures. Developmental Dynamics 229:219–230, 2004. © 2003 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35175/1/10414_ftp.pd

    Inhaled nitric oxide alleviates hyperoxia suppressed phosphatidylcholine synthesis in endotoxin-induced injury in mature rat lungs

    Get PDF
    BACKGROUND: We investigated efficacy of inhaled nitric oxide (NO) in modulation of metabolism of phosphatidylcholine (PC) of pulmonary surfactant and in anti-inflammatory mechanism of mature lungs with inflammatory injury. METHODS: Healthy adult rats were divided into a group of lung inflammation induced by i.v. lipopolysaccharides (LPS) or a normal control (C) for 24 h, and then exposed to: room air (Air), 95% oxygen (O), NO (20 parts per million, NO), both O and NO (ONO) as subgroups, whereas [(3)H]-choline was injected i.v. for incorporation into PC of the lungs which were processed subsequently at 10 min, 4, 8, 12 and 24 h, respectively, for measurement of PC synthesis and proinflammatory cytokine production. RESULTS: LPS-NO subgroup had the lowest level of labeled PC in total phospholipids and disaturated PC in bronchoalveolar lavage fluid and lung tissue (decreased by 46–59%), along with the lowest activity of cytidine triphosphate: phosphocholine cytidylyltransferase (-14–18%) in the lungs, compared to all other subgroups at 4 h (p < 0.01), but not at 8 and 12 h. After 24-h, all LPS-subgroups had lower labeled PC than the corresponding C-subgroups (p < 0.05). LPS-ONO had higher labeled PC in total phospholipids and disaturated PC, activity of cytidylyltransferase, and lower activity of nuclear transcription factor-κB and expression of proinflammatory cytokine mRNA, than that in the LPS-O subgroup (p < 0.05). CONCLUSION: In LPS-induced lung inflammation in association with hyperoxia, depressed PC synthesis and enhanced proinflammatory cytokine production may be alleviated by iNO. NO alone only transiently suppressed the PC synthesis as a result of lower activity of cytidylyltransferase

    A Late Role for bmp2b in the Morphogenesis of Semicircular Canal Ducts in the Zebrafish Inner Ear

    Get PDF
    BACKGROUND:The Bone Morphogenetic Protein (BMP) genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear. METHODOLOGY/PRINCIPAL FINDINGS:We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b(-/-)) embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal. CONCLUSIONS/SIGNIFICANCE:Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species

    Cloning and expression analysis of the chick DAN gene, an antagonist of the BMP family of growth factors

    Full text link
    Differential screening-selected gene aberrative in neuroblastoma (DAN) is a member of a cystine knot protein family that includes Cerberus and Gremlin. First isolated in a screen to identify genes down-regulated in transformed rat fibroblasts, DAN has subsequently been cloned in Xenopus , mouse, and human. Overexpression of DAN suppresses the transformed phenotype and retards the cell's entry into S phase. Biochemical analyses have demonstrated DAN's ability to bind bone morphogenetic proteins and antagonize their signaling activity. In this study, chick DAN was cloned and sequenced, revealing a conserved cystine knot region as well as an N-glycosylation site. A riboprobe was designed from the 3′ chick DAN coding sequence and used for analysis of DAN in the developing chick embryo by in situ hybridization. Chick DAN was expressed beginning at stage 10 in the developing somites and the medial otic epithelium. Expression in the neural layer of the eye became apparent at stage 14. By stage 17, expression had expanded to the base of the hindbrain. Limb bud labeling began at stage 20, whereas expression in the branchial arches appeared at stage 25. Chick DAN expression generally corresponded to that of mouse DAN expression as shown by comparative in situ hybridization. However, chick DAN was found in the otic epithelium and notochord, whereas mouse DAN was restricted to the overlying otic ectomesenchyme and was absent from the notochord. This observation suggests that DAN may play different roles in chick and mouse otic and notochord development. © 2002 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35169/1/10079_ftp.pd

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore