420 research outputs found

    The check of QCD based on the tau-decay data analysis in the complex q^2-plane

    Get PDF
    The thorough analysis of the ALEPH data on hadronic tau-decay is performed in the framework of QCD. The perturbative calculations are performed in 3 and 4-loop approximations. The terms of the operator product expansion (OPE) are accounted up to dimension D=8. The value of the QCD coupling constant alpha_s(m_tau^2)=0.355 pm 0.025 was found from hadronic branching ratio R_tau. The V+A and V spectral function are analyzed using analytical properties of polarization operators in the whole complex q^2-plane. Borel sum rules in the complex q^2 plane along the rays, starting from the origin, are used. It was demonstrated that QCD with OPE terms is in agreement with the data for the coupling constant close to the lower error edge alpha_s(m_tau^2)=0.330. The restriction on the value of the gluonic condensate was found =0.006 pm 0.012 GeV^2. The analytical perturbative QCD was compared with the data. It is demonstrated to be in strong contradiction with experiment. The restrictions on the renormalon contribution were found. The instanton contributions to the polarization operator are analyzed in various sum rules. In Borel transformation they appear to be small, but not in spectral moments sum rules.Comment: 24 pages; 1 latex + 13 figure files. V2: misprints are corrected, uncertainty in alpha_s is explained in more transparent way, acknowledgement is adde

    Partial Wave Analysis of the Reaction p(3.5GeV)+p→pK+Λp(3.5 GeV)+p \to pK^+\Lambda to Search for the "ppK−ppK^-" Bound State

    Get PDF
    Employing the Bonn-Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV)+p→pK+Λp(3.5GeV)+p\to pK^{+}\Lambda. This reaction might contain information about the kaonic cluster "ppK−ppK^-" via its decay into pΛp\Lambda. Due to interference effects in our coherent description of the data, a hypothetical K‟NN\overline{K}NN (or, specifically "ppK−ppK^-") cluster signal must not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectra like pΛp\Lambda. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K‟NN\overline{K}NN cluster. At a confidence level of CLs_{s}=95\% such a cluster can not contribute more than 2-12\% to the total cross section with a pK+ΛpK^{+}\Lambda final state, which translates into a production cross-section between 0.7 ÎŒb\mu b and 4.2 ÎŒb\mu b, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.Comment: 7 Pages, 5 Figure

    Nuclear Skins and Halos in the Mean-Field Theory

    Full text link
    Nuclei with large neutron-to-proton ratios have neutron skins, which manifest themselves in an excess of neutrons at distances greater than the radius of the proton distribution. In addition, some drip-line nuclei develop very extended halo structures. The neutron halo is a threshold effect; it appears when the valence neutrons occupy weakly bound orbits. In this study, nuclear skins and halos are analyzed within the self-consistent Skyrme-Hartree-Fock-Bogoliubov and relativistic Hartree-Bogoliubov theories for spherical shapes. It is demonstrated that skins, halos, and surface thickness can be analyzed in a model-independent way in terms of nucleonic density form factors. Such an analysis allows for defining a quantitative measure of the halo size. The systematic behavior of skins, halos, and surface thickness in even-even nuclei is discussed.Comment: 22 RevTeX pages, 22 EPS figures included, submitted to Physical Review

    Origin of the low-mass electron pair excess in light nucleus-nucleus collisions

    Get PDF
    We report measurements of electron pair production in elementary p+p and d+p reactions at 1.25 GeV/u with the HADES spectrometer. For the first time, the electron pairs were reconstructed for n+p reactions by detecting the proton spectator from the deuteron breakup. We find that the yield of electron pairs with invariant mass Me+e- > 0.15 GeV/c2 is about an order of magnitude larger in n+p reactions as compared to p+p. A comparison to model calculations demonstrates that the production mechanism is not sufficiently described yet. The electron pair spectra measured in C+C reactions are compatible with a superposition of elementary n+p and p+p collisions, leaving little room for additional electron pair sources in such light collision systems.Comment: 11 pages, 2 figures, \usepackage{epsfig

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Natural clusters of tuberous sclerosis complex (TSC)-associated neuropsychiatric disorders (TAND): new findings from the TOSCA TAND research project.

    Get PDF
    BACKGROUND: Tuberous sclerosis complex (TSC)-associated neuropsychiatric disorders (TAND) have unique, individual patterns that pose significant challenges for diagnosis, psycho-education, and intervention planning. A recent study suggested that it may be feasible to use TAND Checklist data and data-driven methods to generate natural TAND clusters. However, the study had a small sample size and data from only two countries. Here, we investigated the replicability of identifying natural TAND clusters from a larger and more diverse sample from the TOSCA study. METHODS: As part of the TOSCA international TSC registry study, this embedded research project collected TAND Checklist data from individuals with TSC. Correlation coefficients were calculated for TAND variables to generate a correlation matrix. Hierarchical cluster and factor analysis methods were used for data reduction and identification of natural TAND clusters. RESULTS: A total of 85 individuals with TSC (female:male, 40:45) from 7 countries were enrolled. Cluster analysis grouped the TAND variables into 6 clusters: a scholastic cluster (reading, writing, spelling, mathematics, visuo-spatial difficulties, disorientation), a hyperactive/impulsive cluster (hyperactivity, impulsivity, self-injurious behavior), a mood/anxiety cluster (anxiety, depressed mood, sleep difficulties, shyness), a neuropsychological cluster (attention/concentration difficulties, memory, attention, dual/multi-tasking, executive skills deficits), a dysregulated behavior cluster (mood swings, aggressive outbursts, temper tantrums), and an autism spectrum disorder (ASD)-like cluster (delayed language, poor eye contact, repetitive behaviors, unusual use of language, inflexibility, difficulties associated with eating). The natural clusters mapped reasonably well onto the six-factor solution generated. Comparison between cluster and factor solutions from this study and the earlier feasibility study showed significant similarity, particularly in cluster solutions. CONCLUSIONS: Results from this TOSCA research project in an independent international data set showed that the combination of cluster analysis and factor analysis may be able to identify clinically meaningful natural TAND clusters. Findings were remarkably similar to those identified in the earlier feasibility study, supporting the potential robustness of these natural TAND clusters. Further steps should include examination of larger samples, investigation of internal consistency, and evaluation of the robustness of the proposed natural clusters

    Search for electroweak production of single top quarks in ppˉp\bar{p} collisions.

    Get PDF
    We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process ppbar->tb+X of 39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb. (arXiv

    Helicity of the W Boson in Lepton+Jets ttbar Events

    Get PDF
    We examine properties of ttbar candidates events in lepton+jets final states to establish the helicities of the W bosons in t->W+b decays. Our analysis is based on a direct calculation of a probability that each event corresponds to a ttbar final state, as a function of the helicity of the W boson. We use the 125 events/pb sample of data collected by the DO experiment during Run I of the Fermilab Tevatron collider at sqrt{s}=1.8 TeV, and obtain a longitudinal helicity fraction of F_0=0.56+/-0.31, which is consistent with the prediction of F_0=0.70 from the standard model

    Hard Single Diffraction in pbarp Collisions at root-s = 630 and 1800 GeV

    Get PDF
    Using the D0 detector, we have studied events produced in proton-antiproton collisions that contain large forward regions with very little energy deposition (``rapidity gaps'') and concurrent jet production at center-of-mass energies of root-s = 630 and 1800 Gev. The fractions of forward and central jet events associated with such rapidity gaps are measured and compared to predictions from Monte Carlo models. For hard diffractive candidate events, we use the calorimeter to extract the fractional momentum loss of the scattered protons.Comment: 11 pages 4 figures. submitted to PR

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
    • 

    corecore