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Abstract
We examine properties of tt candidates events in lepton+jets final states to establish the helicities 

of the W  bosons in t ^  W  +  b decays. Our analysis is based on a direct calculation of a probability 

that each event corresponds to a tt  final state, as a function of the helicity of the W boson. We use 

the 125 events/pb sample of data collected by the D 0 experiment during Run I of the Fermilab 

Tevatron collider at y/i=1.8 TeV, and obtain a longitudinal helicity fraction of Fo=0.56±0.31, 

which is consistent with the prediction of F0=0.70 from the standard model.

PACS numbers: 14.65.Ha, 12.15.Ji, 12.60.Cn, 13.88.+e FERMILAB-Pub-04/057-E
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The observation of the top quark at the Fermilab Tevatron collider [1, 2] has provided 

a new opportunity for examining detailed implications of the standard model (SM). In 

fact, the large mass of the top quark has led to speculation th a t its interactions might be 

especially sensitive to the mechanism of electroweak symmetry breaking and new physics 

th a t is expected to appear at the TeV energy scale. Several pioneering studies of the decays 

of the top quark have already appeared in the literature [3, 4]. Although these have been 

limited by small size of the data sample of the 1992-1996 Run I of the Tevatron collider, 

they have indicated nevertheless th a t it is feasible to measure subtle properties of the top 

quark predicted by the SM.

In this letter we report a measurement of the longitudinal component of the helicity of W 

bosons from t ^  Wb  decays in t t  candidate events. The helicity of the W boson is reflected 

in the angular distribution of the products of its decay. The analysis is based on a m ethod 

of extracting param eters th a t was particularly effective for the measurement of the mass of 

the top quark [5, 6].

An im portant consequence of a heavy top quark is tha t, to good approximation, it decays 

as a free quark. Its expected lifetime is approximately 0.5x10-24 s, and it therefore decays 

about an order of magnitude faster than  the time needed to form bound states with other 

quarks [7]. Consequently, the spin information carried by top quarks is expected to be passed 

directly on to their decay products, so th a t production and decay of top quarks provides a 

probe of the underlying dynamics, with minimal impact from gluon radiation and binding 

effects of QCD [7, 8].

The standard top quark decays through a V -A  charged-current weak interaction. The 

em itted b quark can be considered as essentially massless compared to the top quark (m b << 

m t). To conserve angular momentum, the spin of the b quark, with its dominantly negative 

helicity (i.e., spin pointing opposite to its line of flight in the rest frame of the top quark) can 

therefore point either along or opposite to the spin of the top quark. In the first case, the 

spin projection of the vector W  boson must vanish (i.e., the W  is longitudinally polarized, 

or has zero helicity W0). If the spin of the b quark points opposite to the top quark spin, the 

W  boson must then be left-hand polarized (have negative helicity W- ). Hence, for massless 

b quarks, a top quark can decay only to a left-handed or a longitudinal W boson. In the 

SM, assuming m b =  0, the decay to longitudinal W bosons is determined by the mass of the 

top quark and of the W  boson, and has a branching ratio [9]:

6
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F. = HW) = 5 5 ^ ^ = 0 .7 0 * 0 .0 1  (D

where the mass of the top quark is taken as m t =  174.3 ±5.1 G eV/c2 and of the W boson 

as MW =  80.4 G eV/c2 [10]. (The impact of the finite m b «  4 G eV/c2 on F0 is negligible.)

To examine the nature of the tbW vertex, we use t t  candidates observed at the D 0  experi

ment [11] in pp  collisions at a center-of-mass energy i/s= 1 .8  TeV. The data  correspond to an 

integrated luminosity of 125 events/pb, and this analysis is based on the same lepton+jets 

sample th a t was used to extract the mass of the top quark in a previous D 0  publication

[12]. T hat is, the signal is based on one of the W bosons decaying into l+vi, with l= e  or 

ß, and the other W decaying to two quarks (qq7); this leads to a final state characterized 

by one lepton and at least four jets (two from the fragmentation of the b quarks). Making 

use of information contained in these events and comparing each individual event with the 

differential cross section for ttt production and decay, we extract the fraction F 0 of longi

tudinal W -boson production in the data, assuming no contribution from right-handed W 

bosons. In particular, we rely on a direct comparison of da ta  to the m atrix element for 

the production and decay of t t  states [5, 6]. This m ethod offers the possibility of increased 

statistical precision by using the decay of both  W bosons in these events, and is similar to 

th a t suggested for tt  dilepton decay channels, and used in previous mass analyses of dilepton 

events [13]. A similar approach was also suggested for the measurement of the mass of the 

W  boson at the LEP collider at CERN [14].

An initial set of selection criteria was used to improve the acceptance for lepton+jets 

from tt  events relative to background [12]. These requirements were: E y pton >  20 GeV, 

|ne| <  2, |nM| <  1.7, ETets >  15 GeV, | j t s |  <  2, E t >  20 GeV, |E^epton| +  E t >  60 GeV, 

and | niepton+ET | <  2. (Where n and E T denote pseudorapidities and transverse energy of 

the lepton or jets, and E T the imbalance in transverse energy in the event.) A to tal of 91 

events remained after imposing these requirements [12]. The present analysis uses events 

th a t contain only four reconstructed jets (see below).

The probability density for t t  production and decay in the e+ jets final state, for given 

value of F 0 , is defined as:

2
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Ptt(Fo) =  -------------- I  d o id m id M Ïd m Z d M 2 (2)

where M tt is the leading-order (LO) m atrix element, f  (q1) and f  (q2) are the CTEQ4M

parton distribution functions for the incident quarks [15], $6 is the phase-space factor for

sum is over all twelve perm utations of jets (the effective perm utation of the indistinguishable 

jets from the decay of the W was performed through a symmetrization of the m atrix element) 

and all possible longitudinal momenta for neutrino solutions in W  decay. The integration 

variables used in the calculation are the two top quark invariant masses (m 1,2), the W boson

electron momenta are assumed to correspond to those of produced electrons. The angles 

of the jets are also assumed to reflect the angles of the partons in the final state, and we 

ignore any transverse momentum for the incident partons. These assumptions, together 

with energy and momentum conservation, introduce 15 ^-functions in the integration of the 

probability density, and reduce the dimensionality of the remaining integrations to the five 

given in Eq. 2. Wjets(Ep,E j) corresponds to a function th a t parameterizes the mapping 

between parton-level energies E p and jet energies measured in the detector E j. About 

100,000 Monte Carlo (MC) tt  events (generated with masses between 140 and 200 G eV/c2 

using HERWIG [16], and processed through the D 0  detector-simulation package) were used 

to determine Wjets(Ep, Ej). For ß+ je ts  final state, Wjets is expanded to include the known 

muon momentum resolution and an integration over muon momentum is added to Eq. 2.

All processes th a t contribute to the observed final state must be included in the proba

bility density. The final probability density is therefore w ritten as:

where c1 and c2 are the signal and background fractions, and x is the set of variables needed 

to specify the measured event. Pfj  and refer to  the signal and background production

the 6-object final state, a tt is the to ta l cross section for the LO tt  production process, and the

invariant masses (M 1,2), and the energy of one of the quarks from W decay (p1). Observed

P  (x; F0 ) =  c1Ptt(x; F0 ) +  c2 Pbgd(x) (3)
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and decay probabilities, respectively. W + jets production contributes about 80% to the 

background. The remainder of the background arises from multijet production where one 

jet mimics an electron. The VECBOS [17] W +jets m atrix element is used to calculate the 

background probability density, which is integrated over the energy of the four partons tha t 

lead to jets, and over the W -boson mass, and summed over the 24 je t perm utations and 

neutrino solutions. W ith the selections th a t we have used, the character of the multijet 

background is quite similar to th a t of W +jets, and we have therefore used VECBOS to also 

represent this component of the background, and have estim ated a systematic uncertainty 

resulting from this assumption [6].(Similarly, we have ignored the ~  10% contribution to tt 

production from g g fusion, and used only the qq —► t t  in

Effects such as geometric acceptance, trigger efficiencies, event selection, etc., are taken 

into account through a multiplicative function A(x) th a t is independent of F0. This function 

relates the t t  and W +jets probability densities to their respective measured probability 

densities Pm(x; F0), as follows:

Pm (x; F0 ) =  A(x)[c1 Ptt(x; F0 ) +  c2 p,gd(x)] (4)

Because the m ethod involves a comparison of data with a leading-order m atrix element for 

the production and decay process, we have restricted the analysis to events with exactly 

four jets, reducing the data sample from 91 to 71 events. To increase the purity of signal, a 

selection is applied on the probability of an event corresponding to background (Pbgd). This 

selection was used in Ref. [5, 6] to minimize a bias introduced by the presence of background, 

and it yields a sample of only 22 events. The selected cutoff value of probability density is 

based on MC studies carried out before applying the m ethod to data, and, for a top quark 

mass of 175 GeV/c2, it retains 71% of the signal and 30% of the background [5, 6].

The probabilities are inserted into a likelihood function for N  observed events. The tt  

probability density contains contributions from both W0 (F0) and W-  (F- ) helicities, and 

the ratio of F0/ F -  is allowed to vary. The best estimate of F0 is obtained by maximizing 

the following likelihood function with respect to F0 , subject to the constraint th a t F 0 must

9



be physical, i.e., 0< F0 <1, and F-  +  F0=1 [6]:

N
L(F0) =  e- ^ Pm(x,Fo)d̂  Pm(xi,F0) (5)m

i=1

where Pm is the probability density for observing tha t event. 

Inserting Eq. 4 into Eq. 5 , the likelihood, becomes:

-  lnL(F 0 ) =  -  ln[c1Ptt(xi; F0) +  c2Pbgd(xi)] (6)
i=1

+  N c ^  A(x)Ptt(x; F 0 )dx +  N c 2 J  A(x)Pbgd(x)dx

The above integrals are calculated using MC methods. In this case the acceptance A(x) 

takes the values 1.0 or 0.0, depending on whether the event is accepted or rejected. The 

best values of F0 and the param eters ci are obtained from minimizing -ln L (F 0) with respect 

to all three parameters.

The response of the analysis to different input values of F 0 is examined by fluctuating 

the number of events according to a binomial distribution with an average of 12 events for 

signal (S) and 10 events for background (B ). (S /B  =  12/10 was obtained in [5].) Results 

from analyzing samples of PYTHIA MC [18] events (shown in Fig. 1) indicate th a t a response 

correction must be applied to the data. Studies using resolution-smeared partons (rather 

than  jets) indicate th a t the reason the response correction differs from unity may have origin 

in gluon radiation, which is not included in our definition of probabilities. We apply the 

correction from Fig. 1 to the data, and Fig. 2a shows the result for the final sample of 22 

events. For m t=175 G eV/c2, we find F0=0.60±0.30(stat), and obtain a signal background 

ratio th a t is compatible with the value of 0.54 found in the mass analysis [5].

When a probability density represents the data accurately, no systematic bias is expected 

in the extraction of any param eter through the maximum likelihood method. The current 

uncertainty in the top-quark mass is large enough to affect the value of F0. For sufficiently 

high statistics, the likelihood can be maximized as a function of the two variables (F0,mt), 

which can then correctly take account of any correlations between the two param eters and 

the fact th a t F0 is bounded between 0 and 1. Given our limited statistics, the next best 

way to account for the uncertainty in mt is by projecting the two-dimensional likelihood

10



Figure 1: Result of F0 extraction (F0°utput) as a function of F0”put, for ensembles of 12 tt signal 
events and 10 W +jets for the p y t h i a  samples (black dots) and the h e r w i g  sample (square), after 
all selections. The dotted line has unit slope and passes through (0,0). The solid line is a fit to the 
results from p y t h i a .

Figure 2: a) Likelihood normalized to its maximum value, as a function of F0 for data from Run 
I. b) Likelihood as a function of F0, after integration over mt (see text). The curves are 5th-order 
polynomials fitted to the likelihood. The hatched area corresponds to the most narrow 68.27% 
probability interval.

11



onto the F0 axis. In this way, the systematic uncertainty in F0 from the uncertainty in m t 

can be obtained by integrating the probability over the mass, which we do from 165 to 190 

G eV/c2, in steps of 2.5 G eV/c2, using no other prior knowledge of the mass. Figure 3 shows 

the 2-dimensional probability density as a function of F 0 and mt for the data, after applying 

the response correction from Fig. 1. Figure 2b shows the probability density from Fig. 3, 

after integration over m t . The probability in Fig. 2b is fitted to a 5th-order polynomial 

as a function of F0. We use the most probable output value (at the maximum) to define 

the extracted F0. The uncertainty in F0 (shaded region in Fig. 2b) is defined by the most 

narrow interval within which the integral of the normalized probability function contains 

68.27% of the area, and reflects the statistical error convoluted with the uncertainty on the 

mass of the top quark:

F0 =  0.56 ±  0.31(stat&mt ) (7)

This is the only uncertainty we are able to treat in this manner. The other systematic 

uncertainties are quite small, and were calculated by varying their impact in the Monte 

Carlo or data, and added in quadrature (see Table I) . The final result is

F0 =  0.56 ±  0.31(stat&mt ) ±  0.07(sys). (8)

After combining the two errors in quadrature, the final result is F0=0.56±0.31, which is 

consistent with expectations of the SM, as well as with the result obtained by the CDF 

Collaboration of 0.91±0.39 [3]. Figure 4 shows our result in terms of the range of allowed 

angular distributions in the decay of the top quark, where C refers to the decay angle of the 

1+ (or d or s quark) relative to the partner b quark in the W rest frame. The grey region 

corresponds to all possible functions with 0< F0 <1. The 68.27% probability interval on 

our measured F0 restricts the allowed region to the black area, and the white central curve 

represents the expectation from the SM.

In summary, we have extracted a longitudinal-helicity fraction of 0.56±0.31 for W boson 

decays in two lepton+jets channels in t t  events. Although our measurement is limited by the 

small event sample of Run I, this powerful technique should provide far greater sensitivity 

to any departures from the SM in the far larger data  sample anticipated in Run II.
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Figure 3: Likelihood normalized to its maximum value as a function of mt and F0.

cos f

Figure 4: All possible decay functions cos C for different mixtures of W-  and W0 (grey region), 
where C refers to the decay angle in the W rest frame. The result of our analysis, indicated by the 
black region, corresponds to the most probable value of F0 and its 68.27% interval. The white line 
is the prediction of the SM.
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