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Abstract

We report measurements of electron pair production in elementary p+p and d+p reactions at

1.25 GeV/u with the HADES spectrometer. For the first time, the electron pairs were reconstructed

for n+p reactions by detecting the proton spectator from the deuteron breakup. We find that the

yield of electron pairs with invariant mass Me+e− > 0.15 GeV/c2 is about an order of magnitude

larger in n+p reactions as compared to p+p. A comparison to model calculations demonstrates that

the production mechanism is not sufficiently described yet. The electron pair spectra measured in

C+C reactions are compatible with a superposition of elementary n+p and p+p collisions, leaving

little room for additional electron pair sources in such light collision systems.

PACS numbers: 25.75.-q, 25.75.Dw, 13.40.Hq
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The formation and investigation of strongly interacting matter at high temperature and

density is in the focus of experiments with relativistic and ultra-relativistic heavy-ion beams.

In recent years, dilepton spectroscopy has been established as a valuable tool to probe

such extreme matter states. Experiments performed at SPS (40 − 158 GeV/u) and RHIC

(
√

sNN = 200 GeV) energies found a significant excess of lepton pairs originating from the

hot and dense phase of the formed matter, over-shining contributions from electromagnetic

decays of long-lived mesons during the later stages of the collisions [1]. At lower beam

energies (1 − 2 GeV/u) electron pair (e+e−) production has been studied by DLS [2] and,

more recently, by HADES [3]. Even for the light collision system C+C a significant electron

pair excess above long-lived sources was identified in the invariant mass range of 0.15 <

Me+e−/(GeV/c2) < 0.6 [4, 5]. The new HADES results confirm remarkably well the DLS

data [5], which could not satisfactorily be explained by various transport models for more

than a decade (for a review see [6]). However, in contrast to the situation at high beam

energies, the question could not be answered whether the observed excess is related to the

onset of in-medium effects and not to some insufficiently described elementary dilepton

sources. This dilemma can be traced back to the quite different composition of the strongly

interacting matter formed at these low energies where baryons, mainly nucleons (N) and

∆(1232) resonances, dominate over mesonic degrees of freedom [7]. A fully microscopic

description, however, suffers from poorly known elementary processes like Dalitz decays of

baryonic resonances (i.e. ∆, N∗ → Ne+e−) and non-resonant NN bremsstrahlung.

By comparing such model calculations [8, 9, 10] with data obtained by DLS for p+p

and p+d collisions at energies near the η production threshold (Ebeam = 1.27 GeV/u) in

N+N collisions [11] it has been concluded that the electron pair yield can qualitatively be

understood assuming three sources: (i) π0 Dalitz decay, (ii) ∆ Dalitz decay (∆ → Ne+e−),

and (iii) ”quasi-elastic” N+N scattering NN → NNe+e− (bremsstrahlung). OBE model

calculations [12, 13, 14] show that the bremsstrahlung and the ∆ Dalitz contributions appear

to be almost equally important for n+p collisions, while for p+p collisions the ∆+ decay plays

the dominant role and bremsstrahlung is strongly suppressed. However, the calculations

differ in the absolute cross sections; at 1.04 GeV for example, results of a recent work [12]

reveal a ∼ 2 − 4 times larger yield (depending on mass) compared to other calculations.

This new outcome has triggered a series of microscopic transport calculations [8] which are

successful in explaining the pair spectra measured in C+C collisions by DLS as well as by
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HADES.

The aim of the experiments reported in the following was to further constrain this still

not conclusive interpretation. Two dedicated experimental runs were performed with the

High Acceptance Di-Electron Spectrometer [3] installed at the GSI Helmholtzzentrum für

Schwerionenforschung, Germany. Proton and deuteron beams of 107 particles/s with kinetic

energies of 1.25 GeV/u were incident on a liquid hydrogen cell with a length of 5 cm,

corresponding to a total thickness of ρd = 0.35 g/cm2. Quasi-free n+p reactions were

selected on trigger level by detection of fast spectator protons from the deuterium break-up

in a dedicated Forward hodoscope Wall (FW) [15]. It was placed 7 m downstream of the

target and covered polar angles between 0.3◦ and 7◦. Charged particles (p, π±, e±) were

detected in the spectrometer as described in [3].

In p+p reactions, the data readout was started upon a first-level trigger (LVL1) decision

with two different settings requiring: (LVL1A) a charged-particle multiplicity MUL ≥ 3

in HADES or (LVL1B) MUL ≥ 2 with hits in opposite sectors of the time-of-flight detec-

tors. These two trigger conditions were chosen to enrich inclusive electron pair production

(pp → e+e−X) and elastic p+p scattering for normalization purposes, respectively. The trig-

ger efficiency of LVL1A was studied in Monte Carlo simulations. It is nearly independent of

the pair mass and amounts to 0.84. LVL1 was followed by a second-level trigger (LVL2) [3]

requesting at least one electron track candidate. All events with a positive LVL2 decision

and every fifth LVL1 event, disregarding the LVL2 decision, were written to tape (in total

7.9 ·108 events). Electron identification, track reconstruction, and electron pair (unlike- and

like-sign) reconstruction were performed as described in detail in [3, 4, 5]. The combinatorial

background (CB) was obtained from same-event like-sign pairs using the arithmetic mean

dNCB/dMe+e− ≡ (dN/dMe−e− + dN/dMe+e+) to account for correlated background from

double conversion of π0 decay photons or conversion of the photon accompanying Dalitz de-

cays, as well as for uncorrelated e+e− stemming from multi-pion decays. The final invariant

mass distribution of signal pairs is obtained by subtracting the CB from the corresponding

unlike-sign pair distribution corrected, pair by pair, for the detector and reconstruction in-

efficiencies [3]. In total 39 · 103 signal pairs, ∼ 350 hereof in the region above 0.15 GeV/c2

with a signal-to-CB ratio ≥ 1 [16], were reconstructed.

The inclusive cross section for electron pair production in p+p collisions as a function

of the pair invariant mass is shown in Fig. 1 (upper panel). The measured pair yield was
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FIG. 1: (Color online) Electron pair differential cross sections as function of invariant mass (full cir-

cles) measured in p+p reactions (upper) and in quasi-free n+p reactions (lower panel) at 1.25 GeV.

Systematic errors (constant in the whole mass range) are indicated by (red) horizontal bars, statisti-

cal errors by vertical bars. In the analysis, e+e− pairs with an opening angle of α ≤ 9◦ are removed

from the sample. The lines show results of model calculations with the Pluto event generator (see

text for explanations).

normalized to the p+p elastic scattering yield, corrected for reconstruction and trigger ineffi-

ciencies, and multiplied by the known differential elastic cross sections in the acceptance [17].

The overall normalization error of this procedure is estimated to be 9% and does not show

any pair-mass dependence. It results from the error on the published elastic cross section

(5%) and from systematic errors related to the reconstruction of elastic-scattering events

(7%). An additional uncorrelated systematic uncertainty of 20% comes from the pair re-

construction efficiency. It can include a smooth invariant mass dependence and is added in

quadrature.

The data are compared to simulated pair distributions calculated with the Pluto event

5



generator [18] assuming essentially π0 and ∆+ Dalitz decays (see Fig. 1). The measured yield

in the π0 Dalitz decay region is reproduced taking into account the inclusive π0 production

cross section (σpp

π0 = 4.5±0.9 mb) from the resonance model [19], which describes the existing

data [20], and the measured π0 → e+e−γ branching ratio (1.2 ± 0.032% [21]). To model

the emission rate in the mass region above the π0-Dalitz region we follow the procedure

used in microscopic transport calculations. Since at an energy of 1.25 GeV/u pions are

produced mostly through intermediate ∆ resonances [19], the respective cross section for

∆+ production has been fixed to σ∆+ = 3/2 σπ0 . As discussed in [22], there are different

prescriptions for the differential partial decay width dΓ∆→Ne+e−(Me+e−)/dMe+e−. In a quark-

model picture the ∆ radiative decay can be associated with a spin flip and pure S-wave states

for the quarks. Such a magnetic dipole transition is fully described by a magnetic transition

form factor (GM) and its magnitude at the photon point GM(0) = 3.02 ± 0.03, extracted

from pion photo-production experiments [23], is reproduced by [22]. In our simulation [18]

we hence set electric and Coulomb transition form factors to zero, and use the expression for

the ∆ Dalitz decay differential width given in [22]; the result is shown in the upper panel of

Fig. 1 (long dashed line). In this approach, a possible modification of the magnetic transition

form factor due to intermediate vector mesons is not treated and it can therefore be regarded

as a lower bound for ∆ Dalitz contributions to the pair spectrum. To illustrate the variation

in pair yield due to different prescriptions of the form factor we also include in Fig. 1 (short

dashed line) the result of a calculation using the two-component quark model [24], which is

mostly driven in our kinematical range by Vector Meson Dominance (VMD). As expected,

an enhanced yield is observed, in particular for high pair masses. Note that this model

seems to provide a better description of the p+p data.

Next we also include the predictions of the OBE model calculations discussed above. We

have parameterized the calculated differential cross sections obtained in [12]; we have further

assumed isotropic virtual photon emission and have included corrections due to N+N final

state interactions. Details of the implementation can be found in [18]. The result of the

simulation is shown in Fig. 1 as solid black line. The yield calculated in this approach

overestimates the measured spectrum.

We now discuss the deuteron induced quasi-free n+p reactions. The running conditions

were the same as the ones used for the p+p run, except that LVL1A also required a coinci-

dence with at least one charged particle hit in FW. In total, 1.3 · 109 events were recorded
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FIG. 2: (Color online) Upper panel: Electron pair yield as a function of the invariant mass measured

in C+C collisions (full circles) at 1 GeV/u compared to the reference yield obtained from p+p

and n+p collisions (open squares, errors as defined in Fig. 1). Lower panel: Comparison of the

reference spectrum from elementary collisions with the HADES results for C+C collisions at 1

(full circles) and 2 GeV/u (open circles). Contributions from η Dalitz decay have been subtracted

here. The yellow band exactly corresponds to the systematical errors. The inset displays the ratio

to the reference spectrum in the interesting mass range. All distributions are normalized to the

corresponding number of produced π0 mesons.

for d+p reactions. The lower panel of Fig. 1 displays the inclusive cross section for electron

pair production measured in coincidence with the spectator proton in FW. To enhance the

spectator character of the forward detected proton and suppress other reaction types we im-

posed a condition on its momentum (1.6 < psp/(GeV/c) < 2.6). The moderate experimental

momentum resolution obtained from a time-of-flight measurement in FW enforces the given

range of psp. As for the p+p reactions, the dielectron invariant mass spectrum has been

corrected for all inefficiencies and the CB has been subtracted. The overall normalization is
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obtained in an analogous way as for the p+p reactions using the simultaneously measured

(quasi-)elastic p+p scattering yield. The total statistics of signal pairs amounts to 36 · 103

and to 1454 for pairs with invariant mass Me+e− > 0.15 GeV/c2.

The pair cross section in the π0 mass region is a factor of ∼ 2 larger as compared to

the p+p reaction, in accordance with the prediction of the resonance model [19]. The good

agreement between the measured and the simulated yield in the π0 mass region confirms

our analysis and normalization procedure. The shape of the mass spectra changes dramat-

ically when going from p+p to n+p interactions. In the intermediate mass region (0.15 to

0.35 GeV/c2) the n+p yield is enhanced by a factor of about ten over the p+p yield while

one would expect only a factor two if the ∆ were the only relevant source. Furthermore,

in n+p reactions, the tail at high invariant mass extends much further and the ratio of the

two spectra reaches almost a value of 100 at 0.5 GeV/c2. A similar observation was also

made by DLS in p+d experiments for which the quasi-free n+p reactions could however not

be isolated [11]. To further test the validity of the spectator assumption we studied the

shape of the pair spectrum restricting the spectator emission angle to a very forward cone

(0.3◦ ≤ θsp ≤ 2◦). No significant change of the shape of the resulting pair spectrum was

observed [15].

To model the n+p data we proceeded as in the p+p case, but added the following features

to the simulation: (i) the available energy in the center of mass was smeared to include

the neutron momentum distribution in the deuteron using the Paris potential [25] and (ii)

contributions from η Dalitz decays were accounted for (dashed-double dotted line). The

cross sections for np → npη and np → dη reactions are known down to the production

threshold (for a review see [26]). As it can be seen from Fig. 1, the cocktail obtained in

this way does not account for the measured yield. Moreover, also the result of the OBE

calculation [12] (black solid line) does not describe the data (black solid circles) and, in

contrast to the p+p reactions, underestimates the observed yield in the high mass region.

The data show an enhanced emission in the high mass region, well beyond contributions

from η Dalitz decay, while the calculation follows roughly an exponential slope. Note that

the η contribution has been added to the model calculations for both cases.

Leaving this interesting question to further investigations, we continue by comparing

the dielectron invariant mass distributions measured in C+C reactions to a superposition

of the yields measured in the elementary N+N collisions. In order to obtain the latter
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we assumed that electron pair production in n+n collisions is the same as in p+p, i.e.

we considered the elastic bremsstrahlung process being small and use as N+N reference

spectrum the dielectron yield defined by σNN (Me+e−) = 0.5 · (σpp(Me+e−) + σpn(Me+e−)).

In Fig. 2 (upper part) we compare the reference spectrum to the dielectron yield obtained

previously in C+C at 1 GeV/u [5]. To be consistent, we converted the dielectron cross

section to relative multiplicity according to 1/Nπ0 · dN/dMe+e− = 1/σπ0 · dσ/dMe+e−, where

σπ0 was taken from our measurements [27]. Both distributions agree well over the full mass

range, though measured at slightly different beam energies. We like to emphasize that the

energy dependence is taken out to some extent due to the normalization to neutral pion

production; it is known that the excess electron pair yields observed in C+C collisions

above contributions from long-lived sources exhibit a scaling with beam energy like pion

production [5]. Furthermore, the contribution from η Dalitz decay in the relevant mass range

is small, i.e. < 15%. The absence of a strong beam energy dependence is demonstrated in

the lower panel of Fig. 2, where the N+N reference spectrum is compared with both our

C+C results at 1 and 2 GeV/u. To better visualize the scaling behavior of the excess yield

over long-lived sources, the η contribution has been subtracted using the data from [26, 28].

A very good agreement between all collision systems can be observed in the excess region

(0.15 < Me+e−/(GeV/c2) < 0.5), suggesting a common source for the excess pairs, scaling

with beam energy like pion production (see insert in Fig. 2). The reduced phase space at

the lower beam energies affects evidently the high-mass region (Me+e− > 0.5 GeV/c2) only.

To correct for a slight difference in acceptance between the runs with carbon target and

LH2 target the reference spectrum was scaled up by a factor of 1.28. Hence we conclude

that the so-called ”DLS puzzle”, i.e. the so far unexplained excess of electron pairs above

contributions from long-lived sources, has its origin in a hitherto insufficient treatment of

radiation from elementary N+N collisions.

In summary, we have measured dielectron production in p+p and quasi-free n+p collisions

at 1.25 GeV. A very strong isospin dependence of the dielectron production has been found.

We have shown that the puzzling dielectron excess in the intermediate mass range of 0.15 <

Me+e−/(GeV/c2) < 0.5 observed in C+C collisions at 1 and 2 GeV/u can be described

by a superposition of elementary p+p and n+p collisions. Although a sound theoretical

description of the relevant sources is still lacking, the excess can be traced back essentially

to effects present already in n+p collisions. Further investigations to search for significant
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medium effects, based on the reference established in this work, are planned by HADES and

will concentrate on heavier collision systems.
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