203 research outputs found

    Long-range Kondo signature of a single magnetic impurity

    Full text link
    The Kondo effect, one of the oldest correlation phenomena known in condensed matter physics, has regained attention due to scanning tunneling spectroscopy (STS) experiments performed on single magnetic impurities. Despite the sub-nanometer resolution capability of local probe techniques one of the fundamental aspects of Kondo physics, its spatial extension, is still subject to discussion. Up to now all STS studies on single adsorbed atoms have shown that observable Kondo features rapidly vanish with increasing distance from the impurity. Here we report on a hitherto unobserved long range Kondo signature for single magnetic atoms of Fe and Co buried under a Cu(100) surface. We present a theoretical interpretation of the measured signatures using a combined approach of band structure and many-body numerical renormalization group (NRG) calculations. These are in excellent agreement with the rich spatially and spectroscopically resolved experimental data.Comment: 7 pages, 3 figures + 8 pages supplementary material; Nature Physics (Jan 2011 - advanced online publication

    Insulin-like signalling to the maternal germline controls progeny response to osmotic stress

    Get PDF
    In 1893 August Weismann proposed that information about the environment could not pass from somatic cells to germ cells, a hypothesis now known as the Weismann barrier. However, recent studies have indicated that parental exposure to environmental stress can modify progeny physiology and that parental stress can contribute to progeny disorders. The mechanisms regulating these phenomena are poorly understood. We report that the nematode Caenorhabditis elegans can protect itself from osmotic stress by entering a state of arrested development and can protect its progeny from osmotic stress by increasing the expression of the glycerol biosynthetic enzyme GPDH-2 in progeny. Both of these protective mechanisms are regulated by insulin-like signalling: insulin-like signalling to the intestine regulates developmental arrest, while insulin-like signalling to the maternal germline regulates glycerol metabolism in progeny. Thus, there is a heritable link between insulin-like signalling to the maternal germline and progeny metabolism and gene expression. We speculate that analogous modulation of insulin-like signalling to the germline is responsible for effects of the maternal environment on human diseases that involve insulin signalling, such as obesity and type-2 diabetes

    Mechanisms of pulmonary dysfunction after on-pump and off-pump cardiac surgery: a prospective cohort study

    Get PDF
    BACKGROUND: Pulmonary dysfunction following cardiac surgery is believed to be caused, at least in part, by a lung vascular injury and/or atelectasis following cardiopulmonary bypass (CPB) perfusion and collapse of non-ventilated lungs. METHODS: To test this hypothesis, we studied the postoperative pulmonary leak index (PLI) for (67)Ga-transferrin and (transpulmonary) extravascular lung water (EVLW) in consecutive patients undergoing on-pump (n = 31) and off-pump (n = 8) cardiac surgery. We also studied transfusion history, radiographs, ventilatory and gas exchange variables. RESULTS: The postoperative PLI and EVLW were elevated above normal in 42 and 29% after on-pump surgery and 63 and 37% after off-pump surgery, respectively (ns). Transfusion of red blood cell (RBC) concentrates, PLI, EVLW, occurrence of atelectasis, ventilatory variables and duration of mechanical ventilation did not differ between groups, whereas patients with atelectasis had higher venous admixture and airway pressures than patients without atelectasis (P = 0.037 and 0.049). The PLI related to number of RBC concentrates infused (P = 0.025). CONCLUSION: The lung vascular injury in about half of patients after cardiac surgery is not caused by CPB perfusion but by trauma necessitating RBC transfusion, so that off-pump surgery may not afford a benefit in this respect. However, atelectasis rather than lung vascular injury is a major determinant of postoperative pulmonary dysfunction, irrespective of CPB perfusion

    DETERMINATION OF TYPES OF INDIVIDUALS IN APHIDS, ROTIFERS AND CLADOCERA 1

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72827/1/j.1469-185X.1929.tb00888.x.pd

    Evolution of reproductive development in the volvocine algae

    Get PDF
    The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male–female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ–soma division of labor and male–female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed

    Methyl Complexes of the Transition Metals

    Get PDF
    Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity.Ministerio de Ciencia e Innovación Projects CTQ2010–15833, CTQ2013-45011 - P and Consolider - Ingenio 2010 CSD2007 - 00006Junta de Andalucía FQM - 119, Projects P09 - FQM - 5117 and FQM - 2126EU 7th Framework Program, Marie Skłodowska - Curie actions C OFUND – Agreement nº 26722
    corecore