77 research outputs found

    NGF Is an Essential Survival Factor for Bronchial Epithelial Cells during Respiratory Syncytial Virus Infection

    Get PDF
    Background: Overall expression of neurotrophins in the respiratory tract is upregulated in infants infected by the respiratory syncytial virus (RSV), but it is unclear where (structural vs. inflammatory cells, upper vs. lower airways) and why, these changes occur. We analyzed systematically the expression of neurotrophic factors and receptors following RSV infection of human nasal, tracheal, and bronchial epithelial cells, and tested the hypothesis that neurotrophins work as innate survival factors for infected respiratory epithelia. Methodology: Expression of neurotrophic factors (nerve growth factor, NGF; brain-derived neurotrophic factor, BDNF) and receptors (trkA, trkB, p75) was analyzed at the protein level by immunofluorescence and flow cytometry and at the mRNA level by real-time PCR. Targeted siRNA was utilized to blunt NGF expression, and its effect on virus-induced apoptosis/ necrosis was evaluated by flow cytometry following annexin V/7-AAD staining. Principal Findings: RSV infection was more efficient in cells from more distal (bronchial) vs. more proximal origin. In bronchial cells, RSV infection induced transcript and protein overexpression of NGF and its high-affinity receptor trkA, with concomitant downregulation of the low-affinity p75 NTR. In contrast, tracheal cells exhibited an increase in BDNF, trkA and trkB, and nasal cells increased only trkA. RSV-infected bronchial cells transfected with NGF-specific siRNA exhibited decreased trkA and increased p75 NTR expression. Furthermore, the survival of bronchial epithelial cells was dramaticall

    Progress and challenges in glacial lake outburst flood research (2017–2021):a research community perspective

    Get PDF
    Glacial lake outburst floods (GLOFs) are among the most concerning consequences of retreating glaciers in mountain ranges worldwide. GLOFs have attracted significant attention amongst scientists and practitioners in the past 2 decades, with particular interest in the physical drivers and mechanisms of GLOF hazard and in socioeconomic and other human-related developments that affect vulnerabilities to GLOF events. This increased research focus on GLOFs is reflected in the gradually increasing number of papers published annually. This study offers an overview of recent GLOF research by analysing 594 peer-reviewed GLOF studies published between 2017 and 2021 (Web of Science and Scopus databases), reviewing the content and geographical focus as well as other characteristics of GLOF studies. This review is complemented with perspectives from the first GLOF conference (7-9 July 2021, online) where a global GLOF research community of major mountain regions gathered to discuss the current state of the art of integrated GLOF research. Therefore, representatives from 17 countries identified and elaborated trends and challenges and proposed possible ways forward to navigate future GLOF research, in four thematic areas: (i) understanding GLOFs - timing and processes; (ii) modelling GLOFs and GLOF process chains; (iii) GLOF risk management, prevention and warning; and (iv) human dimensions of GLOFs and GLOF attribution to climate change.Fil: Emmer, Adam. University of Graz; AustriaFil: Allen, Simon K.. Universitat Zurich; Suiza. Universidad de Ginebra; SuizaFil: Carey, Mark. University of Oregon; Estados UnidosFil: Frey, Holger. Universitat Zurich; SuizaFil: Huggel, Christian. Universitat Zurich; SuizaFil: Korup, Oliver. Universitat Potsdam; AlemaniaFil: Mergili, Martin. University of Graz; AustriaFil: Sattar, Ashim. Universitat Zurich; SuizaFil: Veh, Georg. Universitat Potsdam; AlemaniaFil: Chen, Thomas Y.. Columbia University; Estados UnidosFil: Cook, Simon J.. University Of Dundee; Reino Unido. Unesco. Centre For Water Law, Policy And Science; Reino UnidoFil: Correas Gonzalez, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Das, Soumik. Jawaharlal Nehru University; IndiaFil: Diaz Moreno, Alejandro. Reynolds International Ltd; Reino UnidoFil: Drenkhan, Fabian. Pontificia Universidad Católica de Perú; PerúFil: Fischer, Melanie. Universitat Potsdam; AlemaniaFil: Immerzeel, Walter W.. Utrecht University; Países BajosFil: Izagirre, Eñaut. Universidad del País Vasco; EspañaFil: Joshi, Ramesh Chandra. Kumaun University India; IndiaFil: Kougkoulos, Ioannis. American College Of Greece; GreciaFil: Kuyakanon Knapp, Riamsara. University of Oslo; Noruega. University of Cambridge; Estados UnidosFil: Li, Dongfeng. National University Of Singapore; SingapurFil: Majeed, Ulfat. University Of Kashmir; IndiaFil: Matti, Stephanie. Haskoli Islands; IslandiaFil: Moulton, Holly. University of Oregon; Estados UnidosFil: Nick, Faezeh. Utrecht University; Países BajosFil: Piroton, Valentine. Université de Liège; BélgicaFil: Rashid, Irfan. University Of Kashmir; IndiaFil: Reza, Masoom. Kumaun University India; IndiaFil: Ribeiro De Figueiredo, Anderson. Universidade Federal do Rio Grande do Sul; BrasilFil: Riveros, Christian. Instituto Nacional de Investigación En Glaciares y Ecosistemas de Montaña; PerúFil: Shrestha, Finu. International Centre For Integrated Mountain Development Nepal; NepalFil: Shrestha, Milan. Arizona State University; Estados UnidosFil: Steiner, Jakob. International Centre For Integrated Mountain Development Nepal; NepalFil: Walker-Crawford, Noah. Colegio Universitario de Londres; Reino UnidoFil: Wood, Joanne L.. University of Exeter; Reino UnidoFil: Yde, Jacob C.. Western Norway University Of Applied Sciences; Suiz

    Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV) Based Delivery System

    Get PDF
    Francisella tularensisis a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV) based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA), chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensisSchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100) doses of F. tularensisLVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensisantigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensisproteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Abstinence and Fear Experienced during This Period Produce Distinct Cortical and Hippocampal Adaptations in Alcohol-Dependent Rats

    No full text
    Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence produces significant gray matter damage via myelin dysfunction in the rodent medial prefrontal cortex (mPFC) and alterations in neuronal excitability in the mPFC and the dentate gyrus (DG) of the hippocampus. Specifically, abstinence-induced neuroadaptations have been associated with persistent elevated relapse to drinking. The current study evaluated the effects of forced abstinence for 1 day (d), 7 d, 21 d, and 42 d following seven weeks of CIE on synaptic plasticity proteins in the mPFC and DG. Immunoblotting revealed reduced expression of CaMKII in the mPFC and enhanced expression of GABAA and CaMKII in the DG at the 21 d time point, and the expression of the ratio of GluN2A/2B subunits did not change at any of the time points studied. Furthermore, cognitive performance via Pavlovian trace fear conditioning (TFC) was evaluated in 3 d abstinent rats, as this time point is associated with negative affect. In addition, the expression of the ratio of GluN2A/2B subunits and a 3D structural analysis of neurons in the mPFC and DG were evaluated in 3 d abstinent rats. Behavioral analysis revealed faster acquisition of fear responses and reduced retrieval of fear memories in CIE rats compared to controls. TFC produced hyperplasticity of pyramidal neurons in the mPFC under control conditions and this effect was not evident or blunted in abstinent rats. Neurons in the DG were unaltered. TFC enhanced the GluN2A/2B ratio in the mPFC and reduced the ratio in the DG and was not altered by abstinence. These findings indicate that forced abstinence from CIE produces distinct and divergent alterations in plasticity proteins in the mPFC and DG. Fear learning-induced changes in structural plasticity and proteins contributing to it were more profound in the mPFC during forced abstinence

    Platelet Endothelial Cell Adhesion Molecule-1 and Oligodendrogenesis: Significance in Alcohol Use Disorders

    No full text
    Alcoholism is a chronic relapsing disorder with few therapeutic strategies that address the core pathophysiology. Brain tissue loss and oxidative damage are key components of alcoholism, such that reversal of these phenomena may help break the addictive cycle in alcohol use disorder (AUD). The current review focuses on platelet endothelial cell adhesion molecule 1 (PECAM-1), a key modulator of the cerebral endothelial integrity and neuroinflammation, and a targetable transmembrane protein whose interaction within AUD has not been well explored. The current review will elaborate on the function of PECAM-1 in physiology and pathology and infer its contribution in AUD neuropathology. Recent research reveals that oligodendrocytes, whose primary function is myelination of neurons in the brain, are a key component in new learning and adaptation to environmental challenges. The current review briefly introduces the role of oligodendrocytes in healthy physiology and neuropathology. Importantly, we will highlight the recent evidence of dysregulation of oligodendrocytes in the context of AUD and then discuss their potential interaction with PECAM-1 on the cerebral endothelium

    Role of interleukin-1 and MyD88-dependent signaling in rhinovirus infection

    No full text
    Rhinoviral infection is an important trigger of acute inflammatory exacerbations in patients with underlying airway disease. We have previously established that interleukin-1 beta (IL-1 beta) is central in the communication between epithelial cells and monocytes during the initiation of inflammation. In this study we explored the roles of IL-1 beta and its signaling pathways in the responses of airway cells to rhinovirus-1B (RV-1B) and further determined how responses to RV-1B were modified in a model of bacterial coinfection. Our results revealed that IL-1 beta dramatically potentiated RV-1B-induced proinflammatory responses, and while monocytes did not directly amplify responses to RV-1B alone, they played an important role in the responses observed with our coinfection model. MyD88 is the essential signaling adapter for IL-1 beta and most Toll-like receptors. To examine the role of MyD88 in more detail, we created stable MyD88 knockdown epithelial cells using short hairpin RNA (shRNA) targeted to MyD88. We determined that IL-1 beta/MyD88 plays a role in regulating RV-1B replication and the inflammatory response to viral infection of airway cells. These results identify central roles for IL-1 beta and its signaling pathways in the production of CXCL8, a potent neutrophil chemoattractant, in viral infection. Thus, IL-1 beta is a viable target for controlling the neutrophilia that is often found in inflammatory airway disease and is exacerbated by viral infection of the airways

    Monitoring of Intracranial Pressure in Meningitis

    No full text
    The literature on intracranial pressure (ICP) monitoring in meningitis is limited to case reports and a handful of descriptive series. The aim of this study is to investigate relationships among ICP, cerebral perfusion pressure (CPP), and outcome in meningitis and to identify whether ICP affected clinical decisions.status: publishe
    corecore