25 research outputs found

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects

    Get PDF
    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.Peer reviewe

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia:design, results and future prospects

    Get PDF

    Guidelines for porcine models of human bacterial infections

    No full text
    Supplemental material for Guidelines for porcine models of human bacterial infections by Louise K Jensen, Nicole L Henriksen and Henrik E Jensen in Laboratory Animals</p

    Characterization of the interaction between collectin 11 (CL-11, CL-K1) and nucleic acids.

    No full text
    International audienceCollectins are a group of innate immune proteins that contain collagen-like regions and globular C-type lectin domains. Via the lectin domains, collectins recognize and bind to various microbial carbohydrate patterns. Collectin 11 (CL-11) exists in complex with the complement activating MBL-associated proteases, MASPs. In the present work, we characterize the interaction between CL-11 and DNA, and show that CL-11 binds to DNA from a variety of origins in a calcium-independent manner. CL-11 binds also to apoptotic cells presenting extracellular DNA on their surface. The binding to DNA is sensitive to changes in ionic strength and pH. Competition studies show that CL-11 binds to nucleic acids and carbohydrates via separate binding-sites and oligomericity appears crucial for binding activity. Combined interaction with DNA and mannan strongly increases binding avidity. By surface plasmon resonance we estimate the dissociation constant for the binding between CL-11 and double stranded DNA oligonucleotides to K(D)=9-20 nM. In an in vitro assay we find that CL-11 binds to DNA coated surfaces, which leads to C4b deposition via MASP-2. We propose that CL-11, e.g. via complement, may play a role in response to particles and surfaces presenting extracellular DNA, such as apopototic cells, neutrophil extracellular traps and biofilms

    Heteromeric complexes of native collectin kidney 1 and collectin liver 1 are found in the circulation with MASPs and activate the complement system.

    Get PDF
    International audienceThe complement system is an important part of the innate immune system. The complement cascade may be initiated downstream of the lectin activation pathway upon binding of mannan-binding lectin, ficolins, or collectin kidney 1 (CL-K1, alias CL-11) to suitable microbial patterns consisting of carbohydrates or acetylated molecules. During purification and characterization of native CL-K1 from plasma, we observed that collectin liver 1 (CL-L1) was copurified. Based on deglycosylation and nonreduced/reduced two-dimensional SDS-PAGE, we detected CL-K1 and CL-L1 in disulfide bridge-stabilized complexes. Heteromeric complex formation in plasma was further shown by ELISA and transient coexpression. Judging from the migration pattern on two-dimensional SDS-PAGE, the majority of plasma CL-K1 was found in complex with CL-L1. The ratio of this complex was in favor of CL-K1, suggesting that a heteromeric subunit is composed of one CL-L1 and two CL-K1 polypeptide chains. We found that the complex bound to mannan-binding lectin-associated serine proteases (MASPs) with affinities in the nM range in vitro and was associated with both MASP-1/-3 and MASP-2 in plasma. Upon binding to mannan or DNA in the presence of MASP-2, the CL-L1-CL-K1 complex mediated deposition of C4b. In favor of large oligomers, the activity of the complex was partly determined by the oligomeric size, which may be influenced by an alternatively spliced variant of CL-K1. The activity of the native heteromeric complexes was superior to that of recombinant CL-K1. We conclude that CL-K1 exists in circulation in the form of heteromeric complexes with CL-L1 that interact with MASPs and can mediate complement activation

    Brain lipidomics and neurodevelopmental outcomes in intrauterine growth restricted piglets fed dairy or vegetable fat diets

    No full text
    Breast milk has neurodevelopmental advantages compared to infant formula, especially in low-birth-weight infants, which may in part relate to the fat source. This study compared neurodevelopmental outcomes in three-day-old normal birth weight (NBW) and intrauterine growth restricted (IUGR) piglets fed a formula diet with either vegetable oil (VEG) or bovine milk fat sources (MILK) for three weeks in a 2 × 2 factorial design. Behavioural tests, lipidomics, MRI and RNA sequencing analyses of plasma and brain tissue were conducted. The absolute levels of 82% and 11% of lipid molecules were different between dietary groups in plasma and hippocampus, respectively. Of the lipid molecules with differential abundance in the hippocampus, the majority were upregulated in MILK versus VEG, and they mainly belonged to the group of glycerophospholipids. Lower absolute brain weights, absolute grey and white matter volumes and behaviour and motor function scores, and higher relative total brain weights were present in IUGR compared to NBW with minor influence of diet. Cognitive function and cerebellar gene expression profiles were similar for dietary and weight groups, and overall only minor interactive effects between diet and birth weight were observed. Overall, we show that the dietary fat source influences the plasma and to a lesser degree the hippocampal lipidome and is unable to improve on IUGR-induced brain structural and functional impairments

    Insulin-Like Growth Factor-1 Supplementation Promotes Brain Maturation in Preterm Pigs

    No full text
    Very preterm infants show low levels of insulin-like growth factor-1 (IGF-1), which is associated with postnatal growth restriction and poor neurologic outcomes. It remains unknown whether supplemental IGF-1 may stimulate neurode-velopment in preterm neonates. Using cesarean-delivered preterm pigs as a model of preterm infants, we investi-gated the effects of supplemental IGF-1 on motor function and on regional and cellular brain development. Pigs were treated with 2.25 mg/kg/d recombinant human IGF-1/IGF binding protein-3 complex from birth until day 5 or 9 before the collection of brain samples for quantitative immunohistochemistry (IHC), RNA sequencing, and quantitative PCR analyses. Brain protein synthesis was measured using in vivo labeling with [2H5] phenylalanine. We showed that the IGF-1 receptor was widely distributed in the brain and largely coexisted with immature neurons. Region-spe-cific quantification of IHC labeling showed that IGF-1 treatment promoted neuronal differentiation, increased subcorti-cal myelination, and attenuated synaptogenesis in a region-dependent and time-dependent manner. The expression levels of genes involved in neuronal and oligodendrocyte maturation, and angiogenic and transport functions were al-tered, reflecting enhanced brain maturation in response to IGF-1 treatment. Cerebellar protein synthesis was increased by 19% at day 5 and 14% at day 9 after IGF-1 treatment. Treatment had no effect on Iba1+ microglia or regional brain weights and did not affect motor development or the expression of genes related to IGF-1 signaling. In conclusion, the data show that supplemental IGF-1 promotes brain maturation in newborn preterm pigs. The results provide further support for IGF-1 supplementation therapy in the early postnatal period in preterm infants

    Thrombelastography (TEG® 6s) early amplitudes predict maximum amplitude in severely injured trauma patients

    No full text
    Severely injured trauma patients are often coagulopathic and early hemostatic resuscitation is essential. Previous studies have revealed linear relationships between thrombelastography (TEG®) five- and ten-min amplitudes (A5 and A10), and maximum amplitude (MA), using TEG® 5000 technology. We aimed to investigate the performance of A5 and A10 in predicting low MA in severely injured trauma patients and identify optimal cut-off values for hemostatic intervention based on early amplitudes, using the cartridge-based TEG® 6s technology. Adult trauma patients with hemorrhagic shock were included in the iTACTIC randomized controlled trial at six European Level I trauma centers between 2016 and 2018. After admission, patients were randomized to hemostatic therapy guided by conventional coagulation tests (CCT) or viscoelastic hemostatic assays (VHA). Patients with available admission-TEG® 6s data were included in the analysis, regardless of treatment allocation. Low MA was defined as <55 mm for Kaolin TEG® and RapidTEG®, and <17 mm for TEG® functional fibrinogen (FF). One hundred eighty-seven patients were included. Median time to MA was 20 (Kaolin TEG®), 21 (RapidTEG®) and 12 (TEG® FF) min. For Kaolin TEG®, the optimal Youden index (YI) was at A5 < 36 mm (100/93% sensitivity/specificity) and A10 < 47 mm (100/96% sensitivity/specificity). RapidTEG® optimal YI was at A5 < 34 mm (98/92% sensitivity/specificity) and A10 < 45 mm (96/95% sensitivity/specificity). TEG® FF optimal YI was at A5 < 12 mm (97/93% sensitivity/specificity) and A10 < 15 mm (97/99% sensitivity/specificity). In summary, we found that TEG® 6s early amplitudes were sensitive and specific predictors of MA in severely injured trauma patients. Intervening on early amplitudes can save valuable time in hemostatic resuscitation
    corecore